Neurology in Practice

Fifth Edition

Y. L. Yu 余毓靈
MD (HK), FRCP, FRCPE, FRACP, FHKCP, FHKAM (Medicine)

J. K. Y. Fong 方嘉揚
MBBS (HK), FRCP, FRCPE, FHKCP, FHKAM (Medicine)

S. L. Ho 何樹良
MD (Wales), FRCP, FRCPE, FRCPG, FHKCP, FHKAM (Medicine)

R. T. F. Cheung 張德輝
MBBS (HK), PhD (W Ont), FRCP, FRCPE, FRCPG, FHKCP, FHKAM (Medicine)

K. H. Chan 陳灌豪
MD (HK), PhD (HK), FRCPG, FHKCP, FHKAM (Medicine)
Contents

Foreword to the Second Edition vi
Preface to the Fifth Edition viii
Preface to the First Edition ix
List of Abbreviations xi
About the Authors xvi

1. Approach to Neurological Diagnosis 1
2. Neurodiagnostic Tests 17
3. Cranial Nerve Disorders 30
4. Headache 48
5. Disorders of Cerebrospinal Fluid Dynamics 59
6. Cerebrovascular Disease 64
7. Epilepsy 90
8. Movement Disorders 111
9. Demyelinating Diseases of the Central Nervous System 134
10. Autoimmune Disorders of the Nervous System 148
11. Dementia 163
12. Impaired Consciousness and Brain Death 175
13. Infections of the Central Nervous System 185
14. Spinal Cord Disorders 213
15. Peripheral Neuropathy 226
16. Myopathy 248
17. Systemic Disease and Neurotoxicity 262
18. Brain Tumours 282
19. Neurorehabilitation 290
20. Common Medicolegal Issues in Neurology 297

Further Reading 309
Index 310
About the Authors

Y. L. Yu is a neurologist in private practice and is Honorary Clinical Professor at the University of Hong Kong and Honorary Consultant at Hong Kong Sanatorium & Hospital. His previous appointments include Registrar and Senior Registrar at National Hospital for Neurology and Neurosurgery, Queen Square, London, and Reader in Neurology, Department of Medicine, University of Hong Kong.

J. K. Y. Fong is a neurologist in private practice and is Consultant Neurologist at Hong Kong Adventist Hospital. His past appointments include Honorary Clinical Assistant Professor at the University of Hong Kong and Honorary Consultant (Neurology) in the Department of Medicine at Ruttonjee Hospital, Senior Medical Officer at Queen Mary Hospital, and Honorary Research Fellow at UCL Institute of Neurology, Queen Square, London.

S. L. Ho is the Henry G. Leong Professor in Neurology and Division Chief (Neurology) at the University of Hong Kong. He is also Honorary Consultant at Queen Mary Hospital and Tung Wah Hospital. A graduate of the University of Wales College of Medicine, he received his general medical training in Coventry and Manchester, and subsequently training in neurology in Birmingham, England. He was Registrar and Clinical Research Fellow at the Department of Neurology, University of Birmingham.

R. T. F. Cheung is the Lee Man-Chiu Professor in Neuroscience at the University of Hong Kong, Director of Acute Stroke Services at Hong Kong West Cluster, and Honorary Consultant at Queen Mary Hospital and Tung Wah Hospital. His previous appointments
include Clinical Fellow in Neurology at the Department of Clinical Neurological Sciences, University of Western Ontario, and Staff Neurologist of the North American Symptomatic Carotid Endarterectomy Trial, Robarts Research Institute, Ontario.

K. H. Chan is Clinical Associate Professor in the Department of Medicine at the University of Hong Kong and Honorary Consultant at Queen Mary Hospital. His previous appointments include Research Fellow in Autoimmune Neurology at the Mayo Clinic, Mayo Medical School, Minnesota, and Clinical Assistant Professor at the University of Hong Kong.
Neurology is the branch of medical science which deals with the nervous system in both its normal and diseased states. Clinical neurology is the application of the basic neurosciences, in particular neuroanatomy, neurophysiology, and neurochemistry in patient management.

Most students and practitioners tend to shy away from neurology allegedly because it is perceived to be difficult. In fact, solving a neurological problem can be the most fascinating exercise in detection and logical deduction in clinical medicine. This demands an organized line of thought, a clear plan to be followed, and a specific aim at each stage of the investigation. As long as a proper approach is adopted, neurological diagnosis can be a straightforward and rewarding exercise.

When one approaches a patient with a neurological problem, three vital questions ought to be asked:
1. Where is/are the lesion(s)?
2. What is/are the probable underlying pathological condition(s)?
3. Is the disorder neurological or functional?

History

History taking is not a haphazard activity; it should focus on the three questions. With care, the diagnosis can be made from the history alone in many cases. In others, the history will direct one to focus on certain aspects of neurological examination. This is important, since the patient may not be able to cooperate if one pursues every fine detail of a full neurological examination. In certain diseases, such as epilepsy and headache, the history is crucial for the diagnosis because physical examination and investigation are often negative.
Relatives or eyewitnesses should be interviewed as far as possible since many patients may not be aware of the incident and symptoms, or are unable to give a full history because of impaired cognition and/or dysphasia.

The history can be unnecessarily lengthy if there is no emphasis, but details should be obtained in relevant areas. The following items should be covered:

- Details of the presenting symptom
- Mode of onset: acute, subacute, insidious
- Duration
- Course of illness: static, intermittent, progressive
- Associated symptoms: positive and negative
- Possible causes or risk factors of the disease
- Psychological aspects
- Functional status: how well the patient copes with the disability
- Family history
- Social (including occupational) history

Physical examination

After history taking, one should have a good idea as to which functional aspects of the nervous system are affected, and detailed examination must be directed to the relevant areas. The examination will serve to confirm the diagnosis suggested by the history.

It cannot be over-emphasized that one must be systematic in the neurological examination; otherwise one will get lost or overlook some important tests. A proposed scheme is as follows.

General examination

This includes recognition of abnormal facies and peripheral signs. It may provide clues to the cause, risk factors or associated conditions of the neurological disorder. Examples are:

- Clubbing and lymphadenopathy in cerebral metastasis
- Blood pressure and heart rhythm in syncope
- Goitre and thyroid signs in myopathy and neuropathy
- Skin rash in dermatomyositis
- Nail fold changes in vasculitis
Non-neurological causes of ‘neurological’ symptoms and important co-morbid conditions may also be identified. Examples are:

- Ear and hearing abnormality in patients with dizziness
- Osteoarthritis of the hip in patients with leg weakness

Neurological examination

Neurological examination begins with observing the patient during history taking. Such observation provides information on higher mental functions. Patient’s own interpretation of symptoms may reveal anxiety, depression, neurosis or delusion.

Components of a practical neurological examination:

- Higher mental functions (relatives’ observations can be very helpful)
 - Assess impaired consciousness using Glasgow Coma Scale (see Table 12.2)
 - Orientation: place, time, person
 - Memory: – immediate recall
 - short-term
 - long-term
 - Serial 7: 100→93→86→79→72→65
 - Current knowledge
 - Mood
 - Insight
 - Speech – Language: ascertain handedness first, then content of speech; dysphasia may be expressive, receptive or global
 - Articulation: dysarthria
 - The Mini-Mental State Examination (MMSE) incorporates many of the above items and is widely used for screening cognitive deficits (see Table 11.2).

- Cranial nerves (see also Chapter 3)
 - I: any change in smell, test each side with aromatic, non-irritant materials
 - II: visual acuity, direct and indirect light reflexes, visual field, fundi
 - III, IV, VI: eye movements in different directions; check for diplopia, nystagmus, and gaze palsy
- V: facial sensation to pinprick and light touch in all three divisions of the trigeminal nerve, corneal reflex, power of jaw opening and closure, jaw jerk
- VII: facial symmetry, UMN and LMN facial weakness
- VIII: hearing acuity, Weber’s and Rinne’s test (256 Hz tuning fork)
- IX, X: any hoarseness of voice, symmetry of palatal movements, gag reflex
- XI: power of sternomastoid and trapezius
- XII: any deviation, wasting or fasciculation of tongue

• Motor examination of upper and lower limbs
 - Muscle bulk, tone, power (Tables 1.1 and 1.2), tendon reflexes, plantar response, coordination, gait
 - Differentiate between UMN and LMN signs
 - Segmental levels for reflexes: biceps (C5–6), supinator (C5–6), triceps (C7–8), finger jerks (C8–T1), knee (L3–4), ankle (S1–2)

• Sensations of upper and lower limbs
 - Pain, temperature, vibration (128 Hz tuning fork), joint position
 - Recognize pattern of sensory loss: peripheral nerve vs dermatome (Figure 1.1)
 - C5–T1 dermatomes over the upper limb: shoulder (C5), thumb (C6), middle finger (C7), little finger (C8), inner-upper arm (T1)
 - C4 and T2 are contiguous over sternal angle
 - Over the trunk: nipple (T4), xiphisternum (T7), umbilicus (T10), symphysis pubis (L1)
 - L2–S2 over the lower limb: upper outer thigh (L2), lower inner thigh (L3), inner lower leg (L4), anterior lower leg and foot (L5), lateral lower leg (S1), mid-strip of leg posteriorly (S2)
 - S3 over saddle region
 - S4–5 over perianal region
<table>
<thead>
<tr>
<th>Region</th>
<th>Muscle</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder</td>
<td>Supraspinatus</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teres minor</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deltoid</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infraspinatus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subscapularis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teres major</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm</td>
<td>Biceps</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brachialis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coracobrachialis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triceps</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Anconeus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Forearm</td>
<td>Supinator longus</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supinator brevis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensor carpi radialis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pronator teres</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexor carpi radialis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexor pollicis longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abductor pollicis longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extensor pollicis brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor pollicis longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor digitorum communis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor indicis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor carpi ulnaris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor digiti minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digitorum superficialis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digitorum profundus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Pronator quadratus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor carpi ulnaris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Palmaris longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hand</td>
<td>Abductor pollicis brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor pollicis brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Opponens pollicis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digiti minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Opponens digiti minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Adductor pollicis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Palmaris brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Abductor digiti minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Lumbricals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Interossei</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Region</td>
<td>Muscle</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L5</td>
<td>S1</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Hip</td>
<td>Iliopsoas</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Tensor fascia latae</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gluteus medius</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gluteus minimus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Quadratus femoris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gluteus maximus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Obturator internus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Piriformis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thigh</td>
<td>Sartorius</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Pectineus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Adductor longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Quadriceps</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gracilis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Adductor brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Obturator externus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Adductor magnus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Adductor minimus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Articularis genus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Semitendinosus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Semimembranosus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Biceps femoris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Leg</td>
<td>Tibialis anterior</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor hallucis longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Popliteus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Plantaris</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor digitorum longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Soleus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gastrocnemius</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Peroneus longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Peroneus brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Tibialis posterior</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digitorum longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor hallucis longus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Extensor hallucis brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Foot</td>
<td>Extensor digitorum brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digitorum brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Abductor hallucis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor hallucis brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Lumbricals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Abductor digiti minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Flexor digiti minimi brevis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Opponens digitii minimi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Quadratus plantae</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Interossei</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Cardiovascular system

- Pulse
- Blood pressure
- Heart sounds and murmurs
- Arterial bruit

Respiratory system

Abdomen

Diagnosis

Upon completion of the examination, it should be possible to arrive at the diagnosis in most cases. There are two stages in the diagnosis: anatomical and pathological.

Anatomical diagnosis

The lesion(s) may be:
- Single, e.g., tumour in the brainstem
- Two or more but discrete, e.g., optic nerve and spinal cord lesions as in multiple sclerosis
- Diffuse, e.g., neurodegenerative disease or viral encephalomyelitis

Anatomical localization applies to single or multiple discrete lesions. The sites of the central (brain and spinal cord) and peripheral nervous systems are:

- Brain
 - Cerebral hemispheres
 - dominant
 - non-dominant
 - Brainstem
 - midbrain
 - pons
 - medulla oblongata
 - Cerebellum

- Spinal cord
- Spinal root

Anterior and middle cranial fossae

Posterior cranial fossa
• Plexus – brachial, lumbosacral
• Peripheral nerve
• Neuromuscular junction
• Muscle

The clinical features and relevant investigations for localization are tabulated (Tables 1.3–1.10). See also Chapter 18 for features of cortical dysfunction.

Table 1.3 Hemisphere lesion

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impaired mentation, dysphasia (dominant), dyspraxia (non-dominant)</td>
<td>MRI or CT brain, EEG</td>
</tr>
<tr>
<td>Homonymous visual field defects</td>
<td></td>
</tr>
<tr>
<td>Contralateral UMN facial weakness, dysarthria</td>
<td></td>
</tr>
<tr>
<td>Contralateral UMN limb weakness</td>
<td></td>
</tr>
<tr>
<td>Contralateral sensory disturbance</td>
<td></td>
</tr>
<tr>
<td>Conjugate gaze deviation towards lesion</td>
<td></td>
</tr>
<tr>
<td>Focal seizures</td>
<td></td>
</tr>
</tbody>
</table>

A UMN lesion refers to a lesion either at the cortex or corticobulbar/corticospinal tract. This may give rise to contralateral facial weakness with relative sparing of the upper facial muscles which are innervated bilaterally. The UMN lesion may also give rise to contralateral limb weakness with spasticity and exaggerated tendon reflexes.

Table 1.4 Posterior fossa lesion

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial nerve deficits</td>
<td>MRI or CT brain, BAEP</td>
</tr>
<tr>
<td>Bilateral or unilateral UMN limb weakness</td>
<td></td>
</tr>
<tr>
<td>Bilateral or unilateral sensory disturbance</td>
<td></td>
</tr>
<tr>
<td>Cerebellar ataxia, nystagmus</td>
<td></td>
</tr>
<tr>
<td>Conjugate gaze deviation away from lesion</td>
<td></td>
</tr>
</tbody>
</table>

NB: Signs of raised intracranial pressure tend to appear early for mass lesions in the posterior fossa.
Table 1.5 Spinal cord lesion

Clinical features
- UMN limb weakness below lesion – unilateral or bilateral
- LMN limb weakness at level of lesion – unilateral or bilateral
- Pattern of sensory deficits – level, glove and stocking, suspended, dissociated
- Sphincter disturbance

Investigations
- MRI spine*, XR spine, SEP, CSF analysis

*If MRI not available, myelogram or CT myelogram is an alternative.

A LMN lesion refers to a lesion of the motor neurone or its axons. Depending on the site (brainstem or spinal cord), it may give rise to ipsilateral facial weakness affecting the upper and lower facial muscles or ipsilateral limb weakness with hypotonia and reduced or absent tendon reflexes.

Table 1.6 Spinal root lesion

Clinical features
- Segmental LMN weakness and sensory deficits
- Autonomic disturbance

Investigations
- NCS, EMG, SEP, XR spine, MRI spine*, CSF analysis

*If MRI not available, myelogram or CT myelogram is an alternative.

Table 1.7 Plexus lesion

Clinical features
- Multi-segmental LMN weakness and sensory deficits
- Autonomic disturbance

Investigations
- NCS, EMG, SEP, MRI, CSF analysis
Table 1.8 Peripheral nerve lesion

| Clinical features | Patterns – symmetrical sensorimotor
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LMN weakness</td>
<td>mononeuritis multiplex</td>
</tr>
<tr>
<td>Sensory deficits</td>
<td>mononeuropathy</td>
</tr>
<tr>
<td>Autonomic disturbance</td>
<td></td>
</tr>
</tbody>
</table>

Investigations

NCS, EMG, CSF analysis, nerve biopsy

Table 1.9 Neuromuscular junction lesion

<table>
<thead>
<tr>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness without wasting – generalized or focal</td>
</tr>
<tr>
<td>Fatiguability or post-exertion reinforcement</td>
</tr>
<tr>
<td>Autonomic disturbance</td>
</tr>
</tbody>
</table>

Investigations

Tensilon test, Anti-AChR, CK, thyroid function, repetitive stimulation

Table 1.10 Myopathy

<table>
<thead>
<tr>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness, wasting or pseudohypertrophy, generalized or in groups</td>
</tr>
<tr>
<td>Muscle pain</td>
</tr>
<tr>
<td>Tendon reflexes may be normal or reduced</td>
</tr>
</tbody>
</table>

Investigations

CK, immune markers, muscle biopsy

Pathological diagnosis

Having made the anatomical diagnosis, the pathological diagnosis has to be postulated. The clues are the mode of onset, duration, and progression of symptoms. For example, a vascular lesion is usually of sudden onset and reaches the maximum intensity within a short time. A tumour is usually of insidious onset and progressive deterioration. Other clues are also helpful. For example, a familial history would indicate a hereditary aetiology. A pre-existing collagen disease would suggest an autoimmune basis of the lesion. It is often helpful to go through the list of likely pathology:

- Congenital
- Hereditary
• Inflammatory: infective, granulomatous, autoimmune
• Demyelinating
• Vascular
• Degenerative
• Neoplastic: benign, malignant
• Traumatic
• Idiopathic

Investigations

After a clinical diagnosis has been arrived at, the next steps are to confirm it and to obtain more information in order to plan the management. Investigations (Tables 1.3–1.10) are organized with these aims in mind. To be cost-effective, they should be specific and relevant. Such targeting can only be achieved with a sound clinical diagnosis.

Common neurological symptoms and their differential diagnosis

Headache (see Chapter 4)

Facial pain (see Chapter 3)

Dizziness

This is a common symptom which may be due to systemic or vestibular disturbance. Distinction has to be made from loss or lapse of consciousness. Associated symptoms of vertigo and disequilibrium, if present, should be elicited.

Systemic disturbance
 presyncope
 hyperventilation
 anaemia
 cardiac arrhythmia
 drug-induced, e.g., bromocriptine, levodopa, methyldopa
 electrolyte disturbance, e.g., hyponatraemia
Vestibular disturbance

Peripheral
- labyrinthitis
- Meniere’s disease

Central
- brainstem/cerebellar lesion
- vertebrobasilar stroke
- cerebello-pontine angle tumours
- demyelination

Altered consciousness

This state includes complete and partial, prolonged and brief disturbance of consciousness. Details of relevant features during the episode should be obtained from the patient or relatives. Many causes of impaired consciousness apply (see Chapter 12).
- epileptic seizures, generalized or complex partial stroke
- cardiogenic syncope
- metabolic/endocrine, especially hypoglycaemia
- intoxication/drug overdose, e.g., alcohol, substance abuse
- neoplastic
- functional disorders

Visual impairment (see Chapter 3)

Ptosis

Unilateral
- III nerve palsy
- Horner’s syndrome
- MG

Bilateral
- MG
- myopathy
Diplopia (see Chapter 3)

Deafness (see Chapter 3)

Dysphagia

Structural lesion (symptoms worse with solid food)
- oesophageal carcinoma or stricture

Impaired neural control (symptoms worse with fluid)
- bulbar palsy (see Chapter 3)
- pseudobulbar palsy, e.g., stroke, MND
- neuromuscular junction, e.g., MG, botulism
- neuropathy, e.g., AIDP

Tremors (see Chapter 8)

Gait disturbance in the absence of limb weakness

Apraxic: diffuse cerebral disease
- subcortical ischaemia or demyelination
- normal pressure hydrocephalus

Ataxic: cerebellar lesion especially midline
- loss of joint position sense, e.g., neurosyphilis, subacute combined degeneration of cord, diabetic neuropathy

Shuffling: parkinsonism

Sensory disturbance in extremities

- peripheral neuropathy
- cervical myelopathy
- functional disorders

Simulated neurological manifestations

It is not uncommon for patients with psychogenic disorders to present with various neurological (and/or other somatic) symptoms.
Common simulated neurological features include impaired cognition, amnesia, seizures, blindness, diplopia, aphony, limb weakness, gait disturbance, tics, tremor, dystonia, pain, and paraesthesia. In these cases, a neurological explanation of the symptoms and signs cannot be found even after thorough examination and investigation. The patient may derive some primary gain from expressing the suppressed unconscious conflict. Avoidance of unpleasant situations, compensation issues, and undue attention from family and carers may constitute secondary gain. A comprehensive psychosocial history from friends and family is essential.

The diagnosis of psychogenic illnesses should only be made after all reasonable steps have been undertaken to exclude organic disorders. Misdiagnosing an organic condition for a psychogenic illness may have serious consequences such as negligence claims (see Chapter 20). Repeated visits may be required before the diagnosis can be made. Do not rush into invasive diagnostic tests or potentially harmful therapeutic interventions as these may bring about more complicated problems. A trial of physiotherapy, psychotherapy, anxiolytic, or antidepressant may be helpful. Consider referral to psychologists or psychiatrists.

The following clues suggest the manifestations are psychogenic in nature:

- The pattern of deficits does not conform to neuroanatomy or neurophysiology.
- Multiple somatic complaints
- Findings on formal examination are inconsistent with functional observation, which is especially useful when the patient is unaware of being observed.
- Variable findings in different examinations

Psychogenic limb weakness
- No muscle wasting or atrophy
- Normal reflexes and tone
- Give-way weakness or fluctuating weakness
- Extensor and flexor muscles equally weak
- Simultaneous contraction of the agonist and antagonist muscles when executing a movement
Psychogenic movement disorders
- Abrupt onset, atypical pattern, paroxysmal symptoms
- Inconsistency over time
- Entrainment of tremor to the examiner’s suggested rate
- Spontaneous remissions
- Disappearance when distracted
- Aggravation during formal examination
- Response to placebo, psychotherapy or suggestion

Psychogenic seizure (see Chapter 7)

Always bear in mind the following:
- Organic and psychogenic disorders may coexist.
- Delirium and dementia are due to organic disorders.
- Cerebrovascular disease, brain tumour, epilepsy, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and Huntington’s disease can produce anxiety and depression.
- Substance misuse (e.g., alcohol, recreational drugs) can lead to psychogenic and neurological complications.
- Psychosomatic disorders consist of hysteria, somatization disorders, somatoform pain disorders, and neurasthenia. They commonly present with fatigue, dizziness, headache or pain attributed to physical illness.
- A patient with factitious disorder repeatedly induces the symptoms or signs of disease in the absence of any psychiatric or physical disorder.
Spinal cord disorders or myelopathies frequently cause severe and permanent disability because the spinal cord contains the entire motor and sensory systems of the trunk and limbs. Therefore, prompt diagnosis and treatment are essential. In particular, acute spinal cord compression is a neurological emergency.

Classification

Spinal cord disorders may be classified according to their causes. Trauma is the most common cause of myelopathy. For acute non-traumatic myelopathies, transverse myelitis and cord compression are common whereas spinal cord stroke is rare. In chronic non-traumatic myelopathies, spondylosis and benign tumours account for most cases. Syringomyelia, multiple sclerosis, degenerative and paraneoplastic cord lesions should be considered in the differential diagnosis. Subacute combined degeneration of spinal cord and syphilitic myelitis are rare but treatable entities.

Congenital and developmental disorders

Examples are syringomyelia, Arnold-Chiari malformation, and diastematomyelia. These conditions are often associated with spinal bifida.

Infection

Neurotropic viruses, e.g., herpes virus, poliovirus, and rabies may affect the spinal cord and/or the brain. The virus, however, cannot be identified in most cases.
Pyogenic infections of leptomeninges usually affect the subarachnoid space around the brain and the spinal cord. Epidural abscess may result from direct or haematogenous spread.

Tuberculous leptomeningitis produces spinal cord ischaemia by inflammatory arteritis. Tuberculous spinal osteitis (Pott’s disease), with its associated psoas abscess and bony destruction, may cause cord compression or ischaemia.

Fungal infections (e.g., cryptococcosis) and parasitic infections (e.g., cysticercosis and hydatid disease) are rare in the spinal cord.

Neoplastic diseases

The lesion may be extradural, intradural-extramedullary, or intramedullary in location. The common benign lesions are neurofibroma and meningioma. The malignant lesions are ependymoma, astrocytoma, and carcinomatous meningeal infiltration. Related entities are paraneoplastic and irradiation myelopathy.

Diseases of the spine

- Spondylosis (*vide infra*)
- In longstanding rheumatoid arthritis, atlantoaxial or subaxial dislocation may cause cervical cord compression.

Vascular disorders

Diseases of the aorta, vertebral, intercostal, and radicular arteries may present as cord transection or anterior spinal artery syndrome. Acute spinal venous obstruction is rare and usually secondary to conditions such as tumour, septicaemia, and thrombotic diathesis; the prognosis is poor because of extensive haemorrhagic infarction. Vasculitis, e.g., in SLE, PAN, may give rise to acute spinal cord symptoms. AVM may either present with acute or chronic spinal cord features.
Demyelination

- Multiple sclerosis
- Post-infectious encephalomyelitis

Degenerative

- Spinocerebellar degeneration
- Idiopathic spastic paraparesis

Trauma (see Chapter 20)

Clinical picture and diagnosis

The clinical features depend on the pattern and level of the lesion (Figure 14.1).

Motor deficits

- UMN weakness below the lesion
- LMN weakness at the level of the lesion
- Mixed LMN and UMN weakness, e.g., upper limbs in cervical cord lesion
- Spinal shock stage: flaccid paralysis

Sensory disturbance

- Spinothalamic sensations: pain, temperature
- Posterior column sensations: vibration, joint position
- Sensory disturbance may present as a sensory level, glove and stocking distribution, segmental sensory loss, or dissociated sensory loss.
- Pain may arise from vertebral collapse or malignant infiltration of spinal root (radicular pain) or spinal cord.
Autonomic dysfunction

- Bladder: spastic or paralytic
- Bowel: incontinence ± constipation
- Sexual dysfunction

Differential diagnosis

- Guillain-Barré syndrome may present as a rapidly evolving tetraparesis. Distinguishing features include the presence of bulbar palsy, paresis of extraocular muscles and areflexia.
- Acute neuropathies: usually due to vasculitis or toxin.
- Myasthenia gravis: no sensory disturbance; ocular involvement is common.
- Acute occlusion of the terminal aorta may cause ischaemia of the cauda equina or proximal sciatic and femoral nerves. Rarely the spinal cord may be involved. Pale cold skin and loss of pulses in the lower limbs are clues to the diagnosis.
- Occlusion of anterior cerebral artery may cause bilateral infarction of the paracentral lobule, resulting in acute paraplegia, sphincter dysfunction, and loss of position sense with intact pain perception. The last feature distinguishes this entity from acute spinal cord syndrome.
- Falx meningioma with pressure effect on the leg areas of the cerebral cortex

Specific investigations

Investigations are guided by the clinical diagnosis, especially for the spinal level where the lesion is likely to be present.

- X-ray spine: vertebral lesions, e.g., collapse, spondylosis
- MRI spine: investigation of choice since the cord, subarachnoid space, and adjacent tissues can be clearly visualized. CT spine or myelogram may be indicated if MRI is not available.
- CSF analysis: useful in infection, demyelination, and neoplastic meningitis

NB: LP may cause further deterioration if there is cord compression.
SELECTED ENTITIES

Acute spinal cord compression

It is a neurological emergency caused by:
- Malignancy: carcinomatous metastasis, lymphoma, myeloma
- Infection: tuberculous or pyogenic abscess, vertebral collapse
- Epidural haematoma: spontaneous, traumatic
- Acute disc protrusion

Urgent MRI is indicated to confirm or exclude spinal cord compression.

High-dose IV steroids can be given prior to confirmation with neuroimaging. Upon confirmation, urgent neurosurgical decompression or radiotherapy should be arranged. Delay of treatment is associated with poor recovery of function.

Transverse myelitis

The causes include viral infection, SLE, post-infectious demyelination, NMOSD, and MS. Note any history of viral infection or vaccination and previous episodes of neurological deficits. Acute spinal cord compression must be excluded.

MRI is indicated to visualize the lesion and exclude cord compression.

CSF analysis commonly shows lymphocytosis, normal glucose, normal or slightly raised protein. Oligoclonal IgG indicates intrathecal synthesis of IgG; it is a non-specific finding although commonly present in demyelination.

Treatment depends on the underlying cause.
Degenerative disease of the spine

If the spinal canal is constitutionally narrow, degenerative tissues of the spine (e.g., osteophytes, discs, ossified posterior longitudinal ligament, hypertrophied ligamentum flava) are more likely to cause compression of the spinal cord or roots.

Cervical spondylotic myelopathy (CSM)

Cervical spondylosis as a radiological feature is very common, and CSM is the most common cause of cervical cord lesion in subjects over age 50.

Males are more affected than females. A history of neck injury, neck pain, and stiffness can be elicited in some patients. The symptomatology is that of a cervical cord lesion, with or without spinal root lesion.

The mechanisms by which cervical spondylosis brings about cord damage are complex. Compression due to acquired spondylotic changes on top of a constitutionally narrow canal (sagittal diameter < 10 mm) is the most important factor. In addition, dynamic factors, viz. friction with osteophytes, pressure from the ligamentum flava, vertebral subluxation, and hyperextension injury also play a part. These mechanisms lead to impairment of microcirculation at the arteriolar level resulting in ischaemic cord damage. The differential diagnosis is that of other cervical cord lesions, e.g., neurofibroma, syringomyelia. Motor neurone disease, at its early stage, may mimic CSM.

Cervical spine radiography provides information on the sagittal diameter of the spinal canal, the presence and degree of spondylotic tissues, and the presence of vertebral subluxation. MRI (Figure 14.2) shows the degree and site of spinal cord and root compression and is the investigation of choice. SEP study may document posterior column deficits and is helpful in monitoring progress.
Treatment is conservative for patients with mild symptoms and/or a long history with little or no progression. However, surgery is indicated for patients with significant symptomatology or progression, and for those in whom conservative treatment has failed.

Cauda equina compression by lumbar prolapsed intervertebral disc (LPID)

LPID is common but in most cases, it either causes compression of a single spinal root (e.g., sciatica) or no neurological damage. Central protrusion of the disc into the spinal canal occurs uncommonly but may lead to acute or subacute cauda equina compression. It occurs more often at L4/5 and L5/S1 levels, hence the lowermost lumbar roots and sacral roots are affected.

The clinical picture is typical, and features include low back pain with or without radiation to both lower limbs; reduced sensation in the buttocks, perineum, and posterior thighs; absent ankle jerks; and sphincter disturbances with urinary retention, constipation and erectile dysfunction. Weakness in the lower limbs, especially of foot movements, may be present.

Diagnosis is made on clinical grounds and confirmed by MRI. Early diagnosis and prompt surgical decompression may partially or completely reverse the deficits.

Intermittent claudication of cauda equina

The underlying pathology is stenosis of the lumbar spinal canal, often due to spondylotic tissues superimposed on a constitutionally narrow canal.

The clinical features consist of weakness, reduced tendon reflexes, and sensory disturbance in the legs after walking a certain distance. At rest, these features may be absent. The differential diagnosis is peripheral vascular disease in which case the pulses in the legs are weak or absent.
X-ray of lumbar spine shows the degenerative bony changes and alignment. MRI confirms the diagnosis and provides information for surgical management.

Surgical decompression is indicated for patients with severe or progressive symptomatology.

Multiple sclerosis (see Chapter 9)

Syringomyelia

This is a classic example of an intramedullary lesion, with cavitation of the central part of the spinal cord, often extending vertically in the central grey matter over many segments. It presents with segmental sensory impairment of spinothalamic sensations due to disruption of decussating fibres at the anterior commissure. Extension of the syrinx to the anterior horns causes segmental amyotrophy, whereas extension to the posterior horns causes segmental loss of posterior column sensations. Functional disturbances of the legs and sphincters occur at a late stage.

Syringobulbia is due to extension of syrinx to the brainstem, resulting in lower cranial nerve palsy and disturbance of facial sensations.

About half of all idiopathic cervical syringomyelia cases are associated with type I Arnold-Chiari malformation in which the neck may be short and congenital abnormalities of the cervical spine and base of skull may be present. Secondary syringomyelia may complicate obstruction of the foramen magnum by localized arachnoiditis, cyst or tumour.

X-ray cervical spine and base of skull may show skeletal abnormalities. In MRI cervical spine (Figure 14.3), the location and extent of the syrinx, as well as cerebellar tonsillar herniation, can be visualized. MRI brain shows syringobulbia and other associated abnormalities.

Decompression of the syrinx is the treatment for symptomatic patients, particularly for those with Arnold-Chiari malformation.
Spinocerebellar ataxia (SCA)

In most cases, including the SCA type 3, the inheritance is autosomal dominant. Sporadic cases are far less common. The symptoms start in the 30s or earlier. The progression is usually slow, and disability is moderate to severe. Degeneration of corticospinal and spinocerebellar tracts results in cerebellar ataxia and pyramidal signs. Associated features are uncommon and include peripheral neuropathy, optic neuropathy, cardiomyopathy, and cardiac arrhythmia. Cognition is intact. There is no curative treatment. Genetic diagnosis (including preimplantation) for the affected family is available.

Subacute combined degeneration of spinal cord

This is a classical and treatable condition due to vitamin B₁₂ deficiency which may occur in pernicious anaemia, dietary insufficiency, and gastric or ileal resection. The pathological changes are degeneration of the lateral and posterior columns of the spinal cord, and to a lesser extent the brain and peripheral nerves. The patient presents with spastic tetraparesis, impaired posterior column sensations, peripheral neuropathy, and occasionally encephalopathy.

The diagnosis is made upon confirmation of vitamin B₁₂ deficiency (e.g., megaloblastic anaemia, low serum B₁₂) and exclusion of other spinal cord lesions. The cause of vitamin B₁₂ deficiency should also be elucidated.

Treatment is by parenteral vitamin B₁₂ replacement. Hypokalaemia may develop during treatment. Early treatment confers a better chance of complete recovery.

Paraneoplastic myelopathy

This is not caused by spinal cord compression or invasion by carcinoma. The clinical syndrome is a rapidly developing non-inflammatory myelopathy with motor and sensory dysfunction.

Pathologically, there is necrosis of the tracts of the spinal cord without evidence of neoplasm. Anti-tumour antibody cross-reactive to the spinal cord has been proposed as the mechanism.
Irradiation myelopathy

The lesion evolves over a period of weeks and then becomes permanent. The total dose, fractionation, and size of radiated field are important factors. In general, fractionated irradiation up to a total dose of 3,500 rad is relatively safe. Irradiation induces oblitative endarteritis and thus ischaemic necrosis of the spinal cord tissues. The time interval between irradiation and the first spinal cord symptom varies, but usually ranges from 6–48 months. CSF is either normal or shows a slightly elevated protein level.
Index

Note: f = figure; t = table

abducens nerve (VI) 31f, 38, 39
abscess 192–95, 197
acalculia 163, 284
acanthocytes 120
accessory nerve (XI) 31f, 46
acetylcholinesterase inhibitors
 125, 170
 donepezil (Aricept) 125, 170, 172
 galantamine (Reminyl) 170, 172
 rivastigmine (Exelon) 125, 170, 172
acid maltase deficiency 254, 255
acoustic neuroma 25, 42, 44, 45, 45t, 285
acromegaly 227t, 233, 249t, 261, 265, 269, 288
activated factor VII 79
acute disseminated
 encephalomyelitis (ADEM)
 134, 138f, 142–44
 acute haemorrhagic
 leukoencephalitis 142
post-immunization
 encephalomyelitis 142
post-infectious
 encephalomyelitis
 (encephalitis) 142,189, 215
post-organ-transplantation
 encephalomyelitis 142
acute inflammatory demyelinating
 polyradiculoneuropathy
 (AIDP). See Guillain-Barrè
 syndrome
acute mountain sickness 62
acyclovir 197, 202, 203
adult metachromatic
 leukodystrophy 138
agnosia 163, 165, 170, 190, 284
agranulocytosis 126
AIDS (acquired
 immunodeficiency syndrome)
 164t, 191, 199, 200t, 204,
 208
akathisia 127
akinesia 111, 122, 127
akinetic mutism 173, 178
albinism 41
alcuronium 212
alien hand syndrome 127
Alport’s syndrome 45t
altered consciousness 13, 92,
 175, 198, 203, 271, 302
aluminium 164t
Alzheimer’s disease (AD) 16,
 117, 163, 163t, 168, 169–71,
 244t
amantadine 123, 141, 258
aminocaproic acid 80
aminoglycosides 45, 45t, 160, 196t
amiodarone 114t, 243t
amitriptyline 43, 55, 204, 237
amoebiasis 190
amphotericin B 208
amyloid 29, 169
aneurysm 20, 49t, 50t, 66f, 67, 68t, 77t, 80, 263
angiography 21–22, 50t, 66f, 74, 80, 81, 82, 84t, 85t
angioplasty 80, 84t, 89
anosmia 32, 283, 301
anterior horn cell disease. See motor neurone disease and spinal muscular atrophy
anterior temporal lobectomy 105
anti-acetylcholine receptor antibody (anti-AChR) 11t, 154, 155, 159
anticholinergics 120, 123, 125, 128, 158, 165, 296
atropine 38t, 158, 182t, 277
benzhexol 123
benztropine 123, 128
orphenidrine 123
pralidoxine 277
anti-cholinesterase 158, 161, 162
anticoagulation 77–78, 81, 82, 83t, 85t, 86, 87, 88, 264
heparin 68t, 75, 77t, 239
low molecular weight heparin (LMWH) 75, 87, 239
new oral anticoagulants (NOACs) 87
warfarin 68t, 77t, 87, 101
antidepressants 15, 57, 126, 127, 133, 141, 167, 182t, 246, 266
antidiuretic hormone, inappropiate secretion (SIADH) 80, 188, 270, 273
antiepileptic drugs (AEDs) 55, 75, 97–103, 98t, 99t, 100t, 102t, 104–7, 104f, 109, 110
adverse effects 100t, 101
carbamazepine 43, 98, 99t, 100t, 101, 102, 107
choice 98, 99t, 100
clobazam 99t, 102
ethosuximide 99t, 101
felbamate 99t
gabapentin 43, 55, 56, 99t, 100, 100t, 101
lamotrigine 99t, 101, 107
levetiracetam 55, 99t, 100, 100t, 109
oxcarbazepine 99t, 100, 100t
phenobarbitone 98, 99t, 100t, 101, 107, 110
phenytoin 41, 55, 98, 99t, 100t, 101, 107, 109
piracetam 99t, 117
pregabalin 43, 99t, 100, 100t
primidone 98, 99t
topiramate 55, 99t, 100, 100t, 101
valproate 55, 98, 99t, 100t, 101, 107
vigabatrin 99t, 100, 100t, 101
zonisamide 100
antihistamines 112, 115, 119, 121, 128
diphenhydramine 128
antiphospholipid antibody syndrome 74, 266
antiplatelet agents 78, 83t, 88
aspirin 78, 85, 85t, 86
clopidogrel 88
dipyridamole 88
ticlopidine 88
antipsychotics (neuroleptics) 112, 114t, 115, 119, 128, 129, 171, 257, 258, 258t, 266
chlorpromazine 171, 250
haloperidol 171
thioridazine 171
aphasia (dysphasia) 3, 9t, 69, 70, 72t, 85t, 163, 283, 284, 301
apraxia (dyspraxia) 9t, 69, 85t, 163, 165, 169, 172
Argyll Robertson pupil 37, 38t, 210
Arnold-Chiari malformation 42, 60, 213, 222, 223t
arterial dissection 49t, 50t, 56, 68t, 74, 80–81, 303
arteriovenous malformation (AVM) 21, 50t, 68t, 77t, 81, 91t, 94, 98t
ataxia 9t, 29, 53, 70, 100t, 101, 137, 180, 190, 191
ataxia telangiectasia 119
atenolol 55
athetosis 114–15, 137
atlanto-axial dislocation or subluxation 119, 267
atrial fibrillation 83t, 85t, 86–87, 86t
atypical antipsychotics (neuroleptics) 126, 129, 171, 258
olanzapine 171, 258
quetiapine 126, 129, 171, 258
risperidone 171, 258
autoimmune encephalitis 148–52
antibodies against neuronal intracellular antigens 152
anti-NMDAR 149–51
LGI1 antibodies 151
autosomal dominant nocturnal frontal epilepsy syndrome 92
axonotmesis 229
azathioprine 157, 159, 260, 267
baclofen 27, 43, 141, 295
Balo’s concentric sclerosis 138
barbiturates 41, 182t, 278
Barthel ADL index 291, 292t
Becker muscular dystrophy 249t, 250, 252, 253t
Behçet’s disease 267
Bell’s palsy 30, 44
benign positional vertigo 45
benign Rolandic epilepsy 102t
benzodiazepines 20, 41, 102, 103, 107, 113, 278, 280, 306
clonazepam 98, 99t, 113
diazemuls 109
diazepam 109
lorazepam 109
midazolam 109, 110
benzylpenicillin 196, 196t, 197, 199, 212
β-blocker (e.g., propranolol) 55, 78, 85t, 113, 130, 253
Betaferon 139
Binswanger’s disease 171
bitemporal hemianopia 33f, 269, 288
blepharospasm 118
Bornholm disease 260
Borrelia burgdorferi 190, 209
botulinum toxin 120, 131, 295
brachial plexopathy 230–31, 234, 279
thoracic outlet syndrome (TOS) 231
bradykinesia 111, 121, 124, 131, 205, 257
brain death 181–84
brainstem auditory evoked potentials (BAEP) 9t, 25
brain tumour 164t, 282–89
astrocytoma 269
cranioopharyngiomas 286
glioma 94, 286, 267f
meningioma 94, 28, 287f
neurofibroma 287–88
oligodendroglioma 286
pituitary tumour 287
Brown-Sèquard syndrome 137, 216f
bulbar palsy 14, 46–47, 147, 217, 239, 273

ceruloplasmin 111, 131, 132
candidiasis 200t
carbon tetrachloride 164t
carcinomatous meningitis 47, 214
carotid artery stenosis 84t, 88–89
carotid endarterectomy 84t, 89
carpal tunnel syndrome 227t, 233–34, 233t, 269
carpopedal spasms 264
catatonia 178–79
catechol-O-methyltransferase (COMT) inhibitor (entacapone) 124
causalgia 227t
central pontine myelinolysis 25, 134, 138, 146–47, 270, 279
cephalosporin, third generation 196, 196t
cerebello-pontine angle lesion or tumour 13, 31, 44, 45
cerebral amyloid angiopathy 68t
cerebral haemorrhage. See intracerebral haemorrhage
cerebral oedema 59, 62, 73, 80, 185, 277, 299f, 300
cerebral toxoplasmosis 200t, 208
cerebral ultrasonography 22, 74, 84t
cerebral vasculitis 49t, 138, 167, 167t, 266
cerebral venous thrombosis 49t, 64, 78, 82
cerebrospinal fluid (CSF) 27, 28, 49t, 50t, 59, 60, 61, 62, 63, 188, 189, 189t
cerebro-tendinous xanthomatosis 164t
cerebrovascular disease (CVD). See stroke
cervical dystonia 118
Charcot-Marie-Tooth disease. See HMSN
Charcot’s joint 210, 228
chemotherapy 272–73
chloroquine 243t, 250, 267
chorea 114–15
gravidarum (pregnancy) 115
Huntington’s 115
Sydenham’s 115, 128
choreoathetosis 94, 111, 114–15
choroid plexus 59
chronic deep brain stimulation 124, 130
chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) 227t, 240–42
Churg-Strauss syndrome 268–69
ciliary ganglion 37, 38t
cisplatin 273
cluster headache (migrainous neuralgia) 48, 49t, 55–56
codeine 103, 278
cognitive impairment 163, 273t, 274, 281, 290, 294
colloid cyst 60
colour vision 32
coma 175–81, 176t, 183f
color vision 32
common neurological symptoms 12–14
complex regional pain syndrome (reflex sympathetic dystrophy syndrome) 245
compound muscle action potentials (cMAP) 22, 23, 156, 156t
computed tomography (CT) 17, 65f, 66f, 287f, 299f
conduction block 23, 44, 241, 244, 244t
congenital myopathy 248, 249t
copolymer-1 (glatiramer acetate) 140
copper 111, 120, 167t
corpus callosotomy 106
cortical dysplasia 91, 91t
coxsackievirus 142, 187, 190, 249t, 260
cranial mononeuropathy 30, 266
cranial or temporal arteritis 30, 49t, 50t, 57–58, 68t, 269
cranial polyneuropathy (polyneuritis cranialis) 30–31
critical illness polyneuropathy 243–44
crocodile tears 44
cryptococcosis/cryptococcal meningitis 186t, 200t, 207–8
CT angiography 21, 66f
Cushing’s syndrome 157, 249t, 261, 269, 288
cyclophosphamide 159, 244, 260, 266, 267
cyclosporine 114t, 159, 260
cytosine arabinoside 273
dantrolene 141, 258, 295
deafness 45, 45t, 46, 254t, 301
deep vein thrombosis (DVT) 78, 80
dehydropiandosterone 266
delirium tremens 146, 279
delusion 3, 122, 126, 170, 210
dementia 163–74, 254t
dengue fever 201
depression 16, 57, 76, 125, 165, 280, 281
depolarizing muscle relaxants (decamethonium, d-tubocurarine, succinylcholine) 253, 256
dermatomyositis. See polymyositis
detrusor sphincter dyssynergia 137
Devic’s disease. See neuromyelitis optica spectrum disorders, neuromyelitis optica
diabetic neuropathies 14, 236–38, 237t
diabetic amyotrophy 236, 237t
diabetic retinopathy 36f
3,4-diaminopyridine 162
Di George syndrome 199
digoxin 115
dimercaprol 276
diplopia 3, 14, 38, 39, 40, 53, 70
disopyramide 253
disorders with anti-myelin oligodendrocyte glycoprotein (MOG) antibody 146
dizziness 12–13, 100t
dopa-decarboxylase inhibitors (benzerazide, carbidopa) 121–22
dopamine agonists 115, 123, 126, 288
apomorphine, pramipexole, ropinirole, rotigotine 123
bromocriptine 12, 258
doxycycline 210
drop attacks 94, 262
drug-induced movement disorders 112, 121, 128–30
acute dystonic reactions 128
akathisia 128
parkinsonism 121, 129
tardive dyskinesia 129–30
Duchenne muscular dystrophy 249t, 250, 251–52
dysarthria 3, 9t, 53, 69, 70, 294
dysautonomia 227t, 228, 238, 239
dyskinesia 111, 122, 123, 124
levodopa-induced 122, 124
dysphagia 14, 70, 111, 120, 127, 133, 147, 211, 245, 252
dysphasia. See aphasia
dyspraxia. See apraxia
dysthyroid eye disease 157
dystonia 114t, 118–20
dengue fever 190, 201
enterovirus 187, 190
Epstein-Barr virus 188, 190, 200t, 238
herpes simplex (HSV) 190, 191, 200t, 201–2, 202f
Japanese B 190, 204
lethargica 112
measles 188, 190
mumps 188, 190
non-viral 190
paramyxovirus 190
rabies 190
rubella 164t, 190
varicella-zoster 190, 200t, 203–4
Zika 201
endocrine myopathies 260–61
epilepsy 91–110
aura 92
complex partial seizures 92, 191
psychogenic seizure 16, 93t
status epilepticus (SE) 107–10, 108t
vagal nerve stimulation (VNS) 106
ergotamine 54, 56
ethambutol 34, 206
evoked potentials 24–25
experimental allergic encephalomyelitis 140
extracranial-to-intracranial (EC-IC) bypass 89
facial nerve (VII) 31f, 43–44, 130, 131, 203
famciclovir 204
fibromuscular dysplasia 80
fluconazole 208
flucytosine 208
Edinger-Westphal nucleus 31f, 37
electroencephalogram (EEG) 9t, 24, 25–26, 93t, 94–96, 95f, 96f, 98t, 102t, 104t
ictal EEG 93t, 94, 95f
video-EEG 26, 95, 104f, 105
electromyography (EMG) 10t, 11t, 23–24
encephalitis 49t, 112, 119, 175, 178, 187–88, 189–91, 189t
arboviruses 189, 204
coxsackie 187, 190, 249t
cytomegalovirus (CMV) 190, 197, 200t, 238
fludrocortisone 126, 127, 237, 263
flumazenil 20, 280
flunarizine 55
5-fluorouracil 273
folate 107, 167t, 208
Foramen of Magendie 59
Foramen of Lushka 59
fresh frozen plasma 79
fronto-temporal dementia 172
fundal appearance 35f, 36f
gadolinium 18, 18t, 19, 66f, 137, 284, 287f
gag reflex 4, 46, 75, 177, 182t
gait disturbance 14, 163
ganciclovir 197
gangliosidoses 164t
giant cell arteritis. See cranial or temporal arteritis
Glasgow Coma Scale (GCS) 175, 176t, 301
glaucoma 35f, 49t
glossopharyngeal nerve (IX) 31f, 46
glyceryl trinitrate 56
gold 243t, 267
Guillain-Barrè syndrome (acute inflammatory demyelinating polyradiculoneuropathy; AIDP) 217, 227t, 238–40
clinical variants 238–39
Hallervorden-Spatz syndrome 112
hallucination 92, 112, 123, 126, 170, 202, 279, 280, 284
headache 58–59
head injury 297–303
cerebral oedema 300
intracranial haematoma 298, 299f
post-concussion syndrome 301
post-traumatic epilepsy 301
primary parenchymal damage 300, 301
soft-tissue and skull injuries 298
systemic complications 300
vascular damage 300
hemiballismus/ballismus 111, 116, 122
hemifacial spasm 44, 94, 130
hemiparesis/hemiplegia 70, 193, 295
hemisphere lesion 9t
hepatic encephalopathy 94, 102, 108, 164t, 165, 279
hereditary motor sensory neuropathy (HMSN; Charcot-Marie-Tooth disease) 29, 227t, 228–29, 247
hereditary sensory autonomic neuropathy (HSAN) 228
hereditary spastic paraplegia 119
Herxheimer reaction 210
hippocampal sclerosis 18, 91, 91t
Holmes-Adie pupil 38, 38t
Horner’s syndrome 13, 38, 38t, 56, 70, 81, 230
human immunodeficiency virus (HIV)-1 138, 142, 200t, 204–5
human T-lymphoto-trophic virus (HTLV)-1 138
Huntington’s disease 16, 115, 119, 132–33, 163t
hydrocephalus 49t, 60–61, 167t, 174, 185f
normal pressure (communicating) 14, 27, 61, 112, 164t, 174
5-hydroxytryptamine (5HT). See serotonin
hyperacusis 44
hyperbaric oxygen 75, 277
hyperkinesia 111
hyperparathyroidism 249t, 271
hypertensive retinopathy 36f
hyperventilation 12, 25, 60, 75, 181, 182t, 264
hyperventilation syndrome 94
hypoglossal nerve (XII) 31f, 47
hypokinesia 111
hypoparathyroidism, pseudohypoparathyroidism 115
hypopituitarism 164t
ichthammol lotions 126
idiopathic intracranial hypertension (benign intracranial hypertension, pseudotumour cerebri) 27, 34, 49t, 62, 284
idiopathic torsion dystonia 119
ifosfamide 273
immunocompromised host 197–99, 200t
antibody deficiency 198
asplenia/hyposplenism 198
cell-mediated immune deficiency 199
complement system deficiency 198
neutropenia 198
indomethacin 57
infections of the CNS 185–212
infective endocarditis 263–64
infliximab 267
influenza virus 142, 190
inhalational anaesthetic agents (e.g., halothane, enflurane, isoflurane) 110, 161, 256
interferon alpha 267
interferon beta (Avonex, Betaferon, Rebif) 139
interferon gamma 139, 267
International League Against Epilepsy (ILAE) 96, 97f
internuclear ophthalmoplegia 136
intracerebral haemorrhage (ICH) 49t, 65f, 67, 68t, 78–79
bleeding diatheses 79
control of blood pressure 78
control of raised ICP 79
intracranial hypotension 63
intracranial pressure (ICP) 34, 40, 50t, 59, 60, 61, 73, 75, 78, 79, 82, 181, 185f, 238
intravenous immunoglobulin (IVIG) 144, 145, 146, 150, 151, 153, 159, 161, 238, 240, 242, 244, 260, 272
ischaemic core, penumbra 76
ischaemic optic neuropathy 34
ischaemic stroke 64, 65f, 67–68t, 75, 76, 176, 188
acute therapy 76–78
acute thrombolysis 76–77, 77t
anticoagulation 77–78
antiplatelet 78
neurosurgery 78
jaw jerk 4, 46
jugular foramen syndrome 46
juvenile myoclonic epilepsy 90, 92, 102t
Kernicterus 91t, 115
Kernig’s sign 187
Kugelberg-Welander 247t
Kayser-Fleischer (KF) ring 131
Kearns-Sayre syndrome 254, 254t
Kernicterus 91t, 115
Kernig’s sign 187
Kugelberg-Welander 247t
Kurtzke Expanded Disability Status Scale (EDSS) 134, 135–36t

lacunar stroke 64, 65f, 67, 69
L-asparaginase 273
Leber’s disease 34
Legionella cincinnatiensis 142
Lennox-Gastaut syndrome 91, 99t
leprosy 42, 227t, 236
lesionectomy 105
leukoencephalopathy 191, 203, 273, 274
levodopa (Madopar, Sinemet) 113, 115, 119, 120, 121–22, 124, 126, 127, 128
Lewy body 121, 164t
Lhermitte’s phenomenon 136
lipohyalinosis 69
lithium 56, 243t
liver transplantation 132
locked-in syndrome 146, 178
locus coeruleus 121
lumbar puncture (LP) 27–28, 59, 60, 74, 194, 195, 217, 303
lumboperitoneal shunt 61
lumbosacral plexopathy (diabetes, malignancy, radiation, retroperitoneal, traumatic) 9, 231–33
Lyme disease 43, 138, 190, 209
macular scar 36f
magnetic resonance imaging (MRI) 9t, 10t, 17–20, 65f, 74, 77t, 138f, 167t, 199f, 220f, 223f, 287f, 299f
malaria, cerebral 190
malignant hyperthermia 256–57, 258t
mannitol 60, 79, 197, 258, 285
Marburg’s variant 138
medial medullary syndrome 47
Meige syndrome 118
memantine (Ebixa) 170, 172
Meniere’s disease 13, 45, 45t
meningioma 164t, 214, 217, 282t, 284, 286, 287f
meningism 49t, 198, 201, 205
meningitis 45t, 49t, 167, 186–89, 189t
carcinomatous 47, 214
chronic 167t, 187, 189t
cryptococcal 186t, 187, 189, 196t
Haemophilus influenzae 186t, 187, 188, 207–8
meningococcal 186t, 196t, 199
pneumococcal 186t, 187, 189t
pyogenic 187, 188, 189t, 196
streptococcus suis 196t, 199
viral (aseptic) 187–88, 197
meralgia paraesthetica 227t, 233t
Mestinon. See pyridostigmine
metabolic myopathy 248
metabolic syndromes 269–71
diabetes insipidus 270
diabetes mellitus 269
hypercalcaemia 164t, 271
hypernatraemia 270
hyperthyroidism 157, 164t, 167, 167t
hypocalcaemia 164t, 271
hypokalaemia 270
hyponatraemia 176, 270
hypothyroidism 157, 164t, 167, 167t, 176, 260, 270
pituitary tumour 269
metamucil 126
methanol 34
methotrexate 260, 267, 273
methyldopa 12, 119, 124
1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) 112
methyldopa 12, 119, 124
metoclopramide 54, 119, 121, 128
metronidazole 196t, 197, 212, 243t
micrographia 111
migraine 51–55
acephalgic 53
aphasic 53
aura 52, 53, 55
childhood periodic syndromes 53
chronic 53
complicated 53
equivalent 53
hemiplegic 53
infarction 54
menstrual 53, 55
ophthalmic 53
retinal 53
status migranosus 53
migrainous neuralgia. See cluster headache
mild cognitive impairment (MCI) 168–69
minimally conscious state 178
Mini-Mental State Examination (MMSE) 3, 165, 166t
mitochondrial encephalomyopathy 28, 117, 157, 250, 254, 254t
mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) 254, 254t
modafinil 179
monoamine oxidase-B inhibitors (rasagiline, selegiline) 123
motor neuron disease (MND)/amyotrophic lateral sclerosis (ALS) 14, 47, 219, 245–46
motor unit action potentials (MUAP) 23
Moyamoya disease 68t, 82
MR angiography 21–22, 66f, 74, 81, 84t
MR venography 82
multiple sclerosis (MS) 24, 41, 42, 45, 134–41, 144, 164t
primary progressive MS (PPMS) 135
progressive relapsing MS (PRMS) 135
relapsing and remitting MS (RRMS) 135, 139, 140
secondary progressive MS (SPMS) 135, 139
variants 138
multiple sleep latency test (MSLT) 27, 179
multiple subpial transaction 106
muscle biopsy 11t, 28
muscular dystrophy 248, 249t
Becker muscular dystrophy 249t, 250, 252, 253t
Duchenne muscular dystrophy 249t, 250, 251–52
myasthenia gravis (MG) 14, 23, 40, 153–61, 226, 272
anaesthetic management 161
classification 153–54
crisis 160–61
D-penicillamine 154, 267
pregnancy 161
repetitive nerve stimulation 23, 155, 156t
Tensilon (edrophonium) test 155
myasthenic syndrome
(Eaton-Lambert syndrome) 23, 156t, 157, 226, 272
mycophenolate 159, 267
Mycoplasma pneumoniae 142
myelopathy. See spinal cord disorders
myoclonus 25, 111, 117, 127, 177t, 180, 272
myoclonus epilepsy with ragged red fibres (MERRF) 254, 254t
myoglobinuric myopathies. See rhabdomyolysis
myokymia 137, 227t
myopathy 11t, 157, 226, 248–61
myotonia 248, 252, 253t
myotonia congenita 249t, 253, 253t
myotonic dystrophy 252
myotonic syndromes 253
naloxone 180, 279
naratriptan 54
narcolepsy 27, 94, 179, 280
cataplexy 94, 179
daytime sleepiness 179
hypnagogic hallucinations 179
sleep paralysis 179
nasopharyngeal carcinoma (NPC) 30, 47, 50t, 193, 259, 274
neoplastic disorders 271–74
chemotherapy, complications 272–73
paraneoplastic syndrome 271–72
radiotherapy, complications 274
nerve biopsy 11t, 29
nerve conduction study (NCS) 10t, 11t, 21–22
neuro-acanthocytosis 115
neurofibrillary tangles 169
neurofibroma/neurofibromatosis 30, 42, 214, 227t, 287–88
neurogenic bowel 296
neuroleptic malignant syndrome (NMS) 257–58, 258t
neuromelanin 121
neuromuscular junction lesion 11t
neuromyelitis optica spectrum disorders (NMOSD) 144–46
neuromyelitis optica (Devic’s disease) 134, 125, 128, 132, 144
neuromyotonia 227t, 256
neuropathic bladder 296
neuropraxia 229
neurorehabilitation 83, 290–96
CNS plasticity 293
neurotmesis 229
neurotoxicology 275–81
alcohol 84t, 91t, 98t, 114t, 164t, 182t, 227t, 243t, 258t, 278–79
amphetamine 68t, 280, 281
arsenic 243t, 275
benzodiazepines 278, 280
cannabis 278, 281
carbon monoxide 112, 175, 276–77
ciguatera poisoning 277
cocaine 68t, 117, 280
estasy (MDMA) 278, 281
environmental neurotoxins 275–76
heroin 231, 243t, 278, 279
lead 34, 164t, 227t, 273, 275
lysergic acid diethylamide (LSD) 281
manganese 112, 164t, 276
marine toxins 277–78
mercury 114t, 164t, 243t, 276
pesticides 277
puffer fish (tetrodotoxin) poisoning 277–78
shellfish 278
solvents 279–80
substance abuse 279–81
n-hexane 34, 227t, 243t, 276
nifedipine 253
nimodipine 80
non-steroidal anti-inflammatory drugs (NSAIDs) 54, 55, 57, 204, 237, 240, 267
nystagmus 3, 9t, 40–42, 44, 70, 101, 137

obstructive sleep apnoea 264–65
ocular myopathy 40
oculogyric crisis 128
oculomotor nerve (III) 31f, 38, 39
olfactory nerve (I) 31f, 32
oligoclonal bands (OB) 137, 143
olivopontocerebellar degeneration 112, 115, 119
optic atrophy 35f, 37, 269
optic chiasm lesions 33f, 269
optic nerve (II) 31f, 32–37
optic neuritis 24, 33f, 49t, 136, 143
optic neuropathy 34, 37
otitis media 45t
otosclerosis 45t

pachymeningitis 60
pallidotomy 124
Pancoast’s tumour 38, 230
pancuronium 212, 258

papilloedema 28, 34, 35f, 37, 59, 176t, 193, 210, 238, 241, 264
paramyotonia congenita 249t, 253, 253t, 256
paraneoplastic neuropathy (subacute sensory, sensorimotor) 242–43
paranoia 165, 169, 281
paraplegia 119, 217, 295
parasomnia 27
parkinsonism 14, 111–13, 119
Parkinson-plus syndromes 112, 126–28
corticobasal ganglionic degeneration (CBGD) 112, 117, 127, 163t
multisystem atrophy (MSA) 112, 126–27, 163t
progressive supranuclear palsy (Steele-Richardson-Olzewski syndrome) 112, 127, 163t
Parkinson’s disease 112, 121–26, 163t
drug therapy 121–26
motor fluctuations 122
non-motor features 124–26
surgical procedures 124
paroxysmal hemicrania 49t, 56–57
pathological diagnosis 11–12
penciclovir 204
penicillamine (D-penicillamine) 132, 154, 160, 267, 276
periodic leg movements 27
periodic paralysis 248, 249t, 255–56
familial hyperkalaemic (Gamstorp’s disease) 255–56
familial hypokalaemic 255
secondary hypokalaemic 255
peripheral nerve lesion 11t
peripheral neuropathy 226–47
acute injuries 229
critical illness 243–44
entrapment 233–36, 267
hereditary 228–29
multifocal motor 244
plexopathy 230–32, 266
toxic or drug-induced 243,
243t
persistent vegetative state 177–78
phaeochromocytoma 49t
phenothiazines 133
Pick’s disease 115, 163t
pizotifen 55
plasmapheresis/plasma exchange
139, 144, 145, 146, 150, 151,
153, 159, 160, 161, 238, 240,
242, 244, 260, 272
plexus lesion 10t
polyarteritis nodosa (PAN) 30,
138, 214, 268
polycythaemia, polycythaemia
rubra vera 64t, 115, 164t,
167, 264
polymyalgia rheumatica 58, 249t
polymyositis, dermatomyositis 2,
157, 226, 249t, 259–60, 272
polysomnography 27, 265
porphyria 164t, 227f
positron emission tomography
(PET) 20–21, 285
posterior fossa lesion 9t
post-herpetic neuralgia 49t, 203
postural hypotension 122, 123,
125t, 126, 227t, 262–63
postural instability 111, 121, 205
primitive reflexes 163, 172, 283
prion diseases. See spongiform
encephalopathies
procainamide 161, 253
progressive multifocal
leukoencephalopathy (PML)
163t, 191, 200t
progressive myoclonic epilepsy
25, 91, 117
propofol 110
protamine sulphate 79
pseudobulbar palsy 14, 46, 172,
246, 273
pseudodementia 167, 172
pseudoparathyroidism 105
pseudoparkinsonism 102
pseudotumour cerebri. See
idiopathic intracranial
hypertension
psychogenic movement disorders
16, 111
psychogenic weakness 15, 228
psychosis 125, 133
ptosis 13
pulmonary embolism 78
pulvinar sign 173
punch-drunk syndrome 112
pupil disorders 37–38
pyridostigmine (Mestinon) 158
pyridoxine 132
pyrimethamine 208
quinine sulphate 161, 253
radioisotope studies 20–21
radionecrosis 274, 285
radiosurgery 43, 285, 288
radiotherapy 218, 271, 274, 285,
286, 288, 289
Ramsay-Hunt syndrome 43, 203
reactive seizures 91
reflex epilepsy 90
reflex sympathetic dystrophy syndrome. See complex regional pain syndrome
restless legs 227t
retinal artery occlusion 35f
retinal vein occlusion 35f
retinitis pigmentosa 35f
retrobulbar neuritis 35
rhabdomyolyis (myoglobinuric myopathies) 108t, 248, 250, 256, 257, 258, 258t
rheumatoid arthritis/disease 214, 227t, 267
rigidity, cogwheel or plastic 111, 121, 124, 127, 131
risus sardonicus 211
rotenone 112
sarcoidosis 138
Schilder’s disease (myelinoclastic diffuse sclerosis) 138
schizophrenia 165, 179, 281
sciatic nerve injury 306–7
seborrheic dermatitis 126
selective serotonin reuptake inhibitors 179
selenium sulphide 126
senokot 126
serotonin 51, 281
severe combined immunodeficiency 199
simulated neurological manifestation 14–16
single photon emission computed tomography (SPECT) 20
Sjögren’s syndrome 138, 268
sleep apnoea 27, 179, 252, 264–65
sleeping sickness, American or African 190
somatosensory evoked potentials (SEP) 10t, 24–25

spasticity 9, 27, 140, 187, 295
spina bifida 60
spinal cord disorders (myelopathy) 213–25, 228, 295
acute compression 218
autonomic dysfunction 217
cauda equina compression 216f, 221
cervical spondylotic myelopathy (CSM) 24, 219–21, 220f
congenital and developmental 213
demyelination 215
diseases of the spine 214
infection 213–14
intermittent claudication 221–22
irradiation 225
lumbar prolapsed intervertebral disc (LPID) 221
myelitis 218
neoplastic 214
paraneoplastic 224
spinocerebellar ataxia (SCA)/spinocerebellar degeneration 119, 163t, 224, 228
subacute combined degeneration 224
syringomyelia/syringobulbia 24, 38, 47, 213, 222, 223f, 235, 265, 305
trauma 304–5
vascular 214
spinal cord/root lesion 10t
spinal muscular atrophy 246–47, 247t
spirochaetal diseases 209–11
general paralysis of the insane (GPI) 211
Lyme disease 43, 138, 190, 209
meningovascular syphilis 211
neurosyphilis 115, 138, 163t, 167t, 209–11
tabes dorsalis 201, 211
spongiform encephalopathies
(prion diseases) 173–74
bovine spongiform encephalopathy 173
Creutzfeldt-Jakob disease (CJD) 115, 117, 163t, 167t, 173–74, 191
variant (vCJD) 163t, 173
startle syndrome 94, 117
statins 84t, 88, 250
steroids (corticosteroids, dexamethasone, methylprednisolone, prednisolone) 56, 58, 60, 63, 139, 159, 202, 218, 257, 260, 266, 267, 269
Stevens-Johnson syndrome 102
stiff-person syndrome 111, 119, 152–53
stroke (cerebrovascular disease) 64–89
cardiogenic causes, embolic 67t, 84–87, 85t, 86t
location of intracranial haemorrhage 68t
risk factors 83t
types and subtypes 64
subacute inflammatory demyelinating polyneuropathy (SIDP) 242
subacute sclerosing panencephalitis (SSPE) 163t, 191–92
subarachnoid haemorrhage (SAH) 49t, 60, 67, 70, 79–80, 303
sub-hyaloid haemorrhage 36f
substantia nigra 121
sudden unexpected death in epilepsy (SUDEP) 91
sulphadiazine 208
syncope 2, 13, 93t, 262, 263
systemic lupus erythematosus (SLE) 115, 138, 191, 214, 218, 227t, 241, 244t, 265–66
systemic sclerosis 268
Takayasu disease 68t
Tensilon test 11t
tension headache 48, 57
teratogenicity 100t
tetanus 211–12
tetabenazine 112, 115, 116, 129
thalamotomy 116, 124
thiamine 109, 147, 180
thiopentone 110
thymectomy 158, 159, 260
thymoma 158
tics 15, 111, 116–17
Gilles de la Tourette’s syndrome 116
tissue plasminogen activator (tPA) 76, 77t
Tolosa-Hunt Syndrome 31, 49t, 56
toxic epidermal necrolysis 100t
tranexamic acid 80
transient global amnesia 94, 262
transient ischaemic attacks (TIA) 64, 81, 82, 83t, 86t, 89
transverse myelitis 134, 138, 143, 144, 203, 213, 218
tremor 111, 113, 114t, 131
cerebellar 113, 114t
dystonic 113, 114t
essential 114t, 130
kinetic 114t
metabolic 114t
physiological 114t
psychogenic 114t
resting 111, 113, 114t
rubral 113, 114t
thyrotoxicosis 114t
triethylene tetramine dihydrochloride (trientine) 132
trigeminal nerve (V) 31f, 42
trigeminal neuralgia (tic
doloureux) 42–43, 137, 141
trinucleotide repeats 132
triptans (sumatriptan, zolmitriptan) 54, 56
tobacco 211
trochlear nerve (IV) 31f, 38, 39
tuberculosis of the CNS 205–7
 tuberculoma 206–7, 206t
tuberculous meningitis (TBM) 44, 47, 188, 200t, 205–6, 206t, 214
tuberculous spinal osteitis (Pott’s disease) 214
typhus, scrub typhus 190
Uthoff’s phenomenon 136
uræmia 101, 165, 227t, 266
vagus nerve (X) 31f, 46–47
valaciclovir 204
vancomycin 196, 196t
varicella-zoster virus 142, 203–4
vascular dementia 64, 163, 163t, 171–72
ventriculoperitoneal shunt 61
verapamil 56, 57
vertebral artery dissection 49t, 80–81
vertigo 44–45
vestibular migraine 45
vestibular neuronitis 45
vestibulocochlear nerve (VIII)
 51f, 44–45
visual acuity 33
visual evoked potentials (VEP) 24, 37
visual field defects 33, 33f
visual pathway 32, 33f
vitamin B, deficiency 164t
vitamin Bl2 deficiency 138, 164t, 167, 167t, 227t
vitamin K 79
Wallerian degeneration 229
Waterhouse-Friederichsen syndrome 199
Weber’s test 4, 45
Wegener’s granulomatosis 30, 268–69
Werdnig-Hoffman disease 247t
Wernicke’s encephalopathy 146, 147, 279
whiplash injury 305
Whipple’s disease 164t
Wilson’s disease 112, 115, 119, 120, 131–32, 164t, 167t
screening of family members 132
writer’s cramp 118
zinc 126, 132