Hong Kong Landscapes Shaping the Barren Rock

Bernie Owen and Raynor Shaw

Hong Kong University Press

14/F Hing Wai Centre 7 Tin Wan Praya Road Aberdeen Hong Kong

© Hong Kong University Press 2007

ISBN 978-962-209-847-3

All rights reserved. No part of this publication may be reproduced or transmitted, in any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior permission in writing from the publisher.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Secure On-line Ordering http://www.hkupress.org

Cover photograph: Easterly view of Lantau Peak from Por Kai Shan, Lantau Island *Title page photograph*: Ngong Ping Plateau, Ma On Shan Country Park

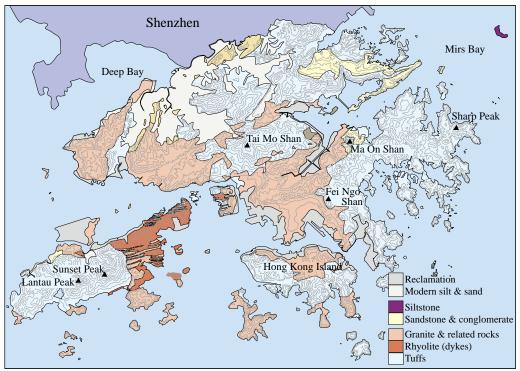
Printed and bound by Colorprint Production Co. Ltd. in Hong Kong, China

Table of Contents

List of Information Notes Using this Book	viii ix
Part One: Introduction	
Modern and Ancient Environments	2
Preamble	2
The Lay of the Land	2
Reconstructing the Past	5
An Environmental History	7
Part Two: Landscape Types and Origins	
Rugged Mountain Landscapes: A Story of Ancient Volcanic Eruptions	13
Rounded Hilly Landscapes: The Roots of Volcanoes	21
Ridges and Colourful Landscapes: Ancient Seas, Rivers, Lakes, and Deserts	25
Lowlands and Valleys: Fractured Rocks and Rivers	33
Coastal Landscapes: Cliffs, Beaches, and Mud Flats	41
The Western Region	41
The Central Region	43
The Eastern Region	45
Part Three: Hong Kong Regions	
The Northwestern New Territories	48
What Lies Beneath	50
Rivers and Floodplains	54
Human Impacts	60
The Northeastern New Territories	67
Landscape Foundations	68
Streams and Waterfalls	71
Marine Inlets and Islands	74
Human Impacts	77
The Western New Territories	84
Magma Chambers and Eruptions	86
High Ground, Low Ground	88
Gullies and Badlands	90
Mountain Streams	94
Human Impacts	96

The Central New Territories	101
An Era of Violent Eruptions	104
Human Impacts	109
The Southeastern New Territories	119
Geological Background	121
Sea Level Change and Islands	125
Human Impacts	127
The Eastern New Territories	131
Rocks and Scenery	133
Coastal Environments	137
Human Impacts	145
Lantau Island	149
Ancient Sediments, a Caldera, and Multiple Intrusions	152
Mass Movements and Landslides	158
Coastal Landscapes	160
Human Impacts	164
Expanding Infrastructure	169
Kowloon and the Lion Rock Ridge	173
Geology and Weathering	175
Human Impacts	180
Hong Kong Island and Lamma	189
Landscape Foundations	192
Human Impacts	195
Seas and Islands	207
Marine Environments	208
Human Impacts	214
The Islands of Hong Kong	215
Epilogue: Landscapes, Past, Present, and Future	230
Global Warming	232
Urbanisation and Landscape	233
Information Sources and Further Reading	235
Part I: Publications Referred to Extensively	235
Part II: Publications Referred to Less Extensively	235
Part III: Further Reading	239
Index	242

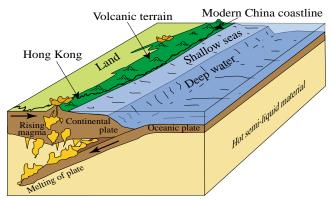
List of Information Notes


01	Geological Time and Dating	6
02	Extrusive Igneous Rocks	15
03	Escarpments and Cuestas	18
04	Intrusive Igneous Rocks	22
05	Beds, Bedding Planes, and Time	26
06	Sedimentary Formations	29
07	Differential Erosion	31
08	Types of Fault	35
09	Joints in Rock	37
10	Boulder Fields and Joints	39
11	Metamorphic Rocks	51
12	Folds	52
13	Mai Po and the Wetlands	55
14	Floodplain Sediments	57
15	Feng Shui and Landscape	83
16	Plate Tectonics	88
17	Colluvium	91
18	Granite Weathering	92
19	Base Level and Streams	95
20	Plantation Trees	98
21	Hong Kong Minerals	100
22	The Ng Tung Chai Waterfalls	102
23	Migrating Volcanoes	105
24	Earthquake Risks in Hong Kong	108
25	Tea Terraces	109
26	Animal Biodiversity	110
27	Reservoirs	111
28	Country Parks	112
29	Mining and Landscape Scars	114
30	The New Town Programme	115
31	Tai Po Kau	116
32	Scheduled Areas	118
33	The Ma On Shan Iron Mine	124
34	Valley Deltas and Progradation	126
35	Chinese Graves	128
36	Landfills	129
37	Butterflies	130
38	Hong Kong Weather	132
39	Insects	134
40	Calderas and Columnar Joints	136
41	Beach Terminology	139
42	Beach Processes	141
43	Delta Sediments	143

44	Hong Kong Corals	145
45	The Lantau Dyke Swarm	155
46	Mass Movements	159
47	Tidal Flats	162
48	Current Ripples	163
49	Pirates and Forts	165
50	Dolphin Habitat Problems	172
51	Weathered Rock Layers 177	, 178
52	Urban Geological Mapping	181
53	Urban Geology	183
54	World War II	187
55	Amphibians and Reptiles	206
56	Tides	210
57	Seismic Profiles	213
58	W. Brother Isl. Graphite Mine	216
59	Vietnamese Refugees	217

RUGGED MOUNTAIN LANDSCAPES: A STORY OF ANCIENT VOLCANIC ERUPTIONS

Long-extinct volcanoes have left an indelible footprint on Hong Kong's landscape. Large parts of the territory were influenced by volcanic activity that produced relatively hard rocks. Today, these commonly form the foundations of the most prominent peaks, including Tai Mo Shan (Big Hat Mountain), which rises to 957 m and is the highest summit in Hong Kong. Other high points underlain by volcanic rocks include: Sunset Peak, Lantau Peak, Fei Ngo Shan, Sharp Peak, and Ma On Shan (p. 12). Although tall cliffs are rare, there are many steep slopes, narrow ridges, and scattered rocky outcrops interspersed with more gentle grassy and wooded areas. Surface boulders are common, resting on relatively thin, stony soils. These rugged mountainous landscapes occur widely in the New Territories, Lantau Island, southern Hong Kong Island, eastern Hong Kong, and throughout most of the Country Parks. The influence of volcanic rocks on the shape of the land surface can also be observed along the more dramatic coastlines, with their steep cliffs and angular, rocky shorelines.

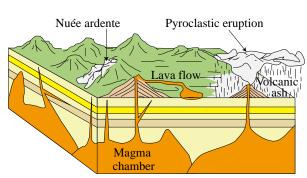

The volcanic rocks were created, not by slow moving lava flows, but by violent eruptions that took place mostly between 165–140 million years ago. Fragments thrown out of these volcanoes originated from hot sticky magma that accumulated

Hong Kong is dominated by volcanic rocks called tuffs (IN02, p. 15) that originated as ash thrown violently out of multiple volcanoes. Today, these igneous rocks are exposed at the surface over about 50% of the territory, mainly occurring in the eastern and northern New Territories, western Lantau, and southern Hong Kong Island.

Rugged Mountain Landscapes

Volcanic rocks in Hong Kong were originally formed as a result of subduction along a plate boundary. This occurred when one rigid plate was forced below another and melted as it descended into the earth's interior, where it reached areas of higher temperature. Magma was produced, which then rose through the overlying rocks to form magma chambers below volcanoes. Occasionally, this material reached the surface, giving rise to violent eruptions.

The photograph above shows the northern slopes of Ma On Shan viewed from a northern ridge on Buffalo Hill. The photograph below is of Sharp Peak—the dramatic backdrop to several superb beaches along the eastern coastline of the East Sai Kung Country Park. Neither of these mountains are especially high (705 m and 468 m respectively), but they both illustrate the rugged, angular nature of the terrain that forms on volcanic rocks.


in reservoirs deep below the surface. These volcanoes were part of an extensive volcanic terrain along, what is today, the south China coastline. The eruptions took place along a linear plate boundary (figure above). In this region, the southern plate was driven northwards, melting as it descended deeper below the northern plate, producing magma.

Similar plate boundaries occur today around the edges of the Pacific Ocean and are responsible for the active volcanoes in places such as the Philippines, Japan, and New Zealand. The rate of supply of the magma controls the eruption frequency. Magmas produced in these settings are rich in silica, which makes them very viscous (sticky). Consequently, they tend to resist movement (flowing), so that eruptions are particularly violent. Lava flows are infrequent and of small volume, travelling only short distances. Another factor in the explosiveness of these eruptions is the expansion of dissolved gas, which is released as the magma rises through the crust and ambient pressures are reduced. Eruptions of this kind generate large quantities of pulverised rock and clouds of ash.

In Hong Kong, the bulk of the erupted material formed fiery clouds of volcanic ash (about 85%), with rhyolite lavas (IN02, p. 15) being less common. The ash was

IN02 Extrusive Igneous Rocks

Igneous rocks originate from the cooling and solidification of hot liquid magma, which is a complex mixture of many elements, dominated by silicon and oxygen. The rocks that form are very varied in their appearance and primarily depend on the chemistry of the original magma and the geological

environment in which they cool. Two major types are recognised. Extrusive rocks are formed at the surface, whereas intrusive rocks remain within the earth's crust (IN04, p. 22).

Hong Kong's extrusive rocks are dominated by tuffs. Lava flows are relatively rare. Tuffs form from layers of ash that settled to the ground surface after being erupted violently into the atmosphere. In some cases, ash mixed with gases from an erupting volcano and the atmosphere to produce a hot dense glowing cloud (a nuée ardente) that flowed down the flanks of the volcano, hugging the ground. The resulting deposit is a particular type of tuff called an ignimbrite.

Extrusive Rocks in Hong Kong:

Crystal tuffs are dominated by mineral fragments. Larger crystals may occur, surrounded by smaller minerals that are too small for the eye to see.

Ignimbrites contain flat volcanic fragments that lie parallel to each other. These were formed when the ash was still hot, loose, and squeezed under its own weight.

A large proportion of the tuffs in Hong Kong consist of a mixture of small mineral and larger, angular rock fragments. Most are a speckled grey colour.

Modern weathering and rock decay pick out larger volcanic fragments on rock surfaces. This photograph shows a volcanic bomb that was thrown out of a volcano and which settled into finer-grained ash.

Rhyolite lava contains minerals with a high silica content. This example from Sai Kung is dark grey and fine-grained, with minerals that are too small to see, except for some larger scattered feldspar crystals.

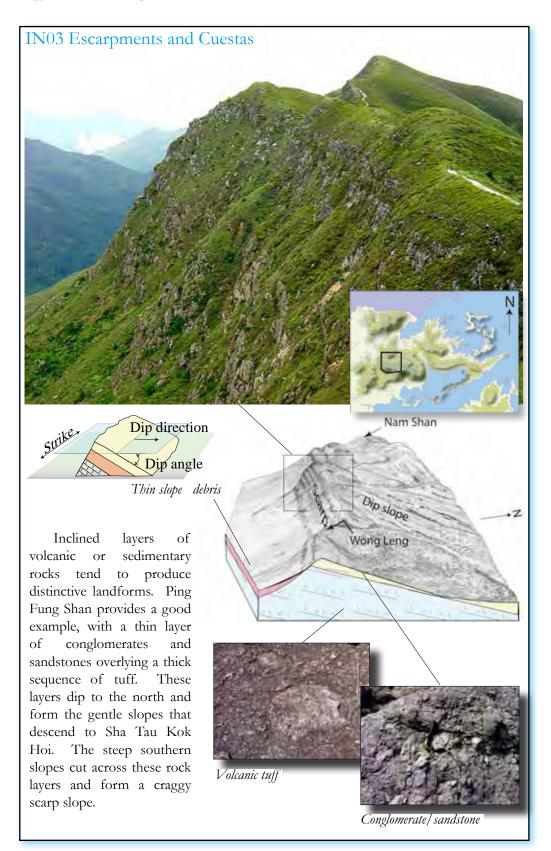
Rugged Mountain Landscapes

mostly fine-grained, consisting of angular crystals, volcanic glass, and rock fragments ripped from the sides of the vent. Two main styles of eruption occurred. Some of the material was thrown out as vast, billowing, fiery clouds (nuées ardentes, IN02, p. 15) that flowed at high velocity down the flanks of the volcanoes. Alternatively, airfall eruptions occurred, during which ash was blown out vertically, up to hundreds or even thousands of metres into the atmosphere, before falling back to the ground. After subsequent events buried the ash, increasing temperature, pressure, and fluids within the rocks caused the loose particles to change into solid tuff. It is this rock that dominates Hong Kong's volcanic landscapes and rugged mountains.

Variations in the size of particles within tuffs produce contrasting landscape types. For example, the most angular and

The Stone Trail, in eastern Sai Kung, follows a stream that drops over several large waterfalls. The photograph shows one of the smaller falls, about 7 m high.

Tuffs are formed from loose volcanic ash that has been turned into solid rock. Tuff is hard and resistant to erosion, forming steep slopes and narrow gorges such as along the Stone Trail (above) in eastern Sai Kung Country Park.


These large rounded boulders, along a Lantau Island footpath, were formed by weathering of solid rock and removal of the fine-grained decayed material (mainly clay). This particular boulder field may also have been involved in a landslip. Boulder fields on hillsides are a common feature of areas underlain by coarser-grained volcanic rocks.

craggy areas are generally developed on fine-grained tuffs, which are more resistant to both chemical and physical decay (IN51, p. 177), and to erosion. In some places, rivers cut through these rocks to form narrow gorges. An excellent example occurs along the Kap Man Hang, a stream in eastern Sai Kung Country Park. The Stone Trail (photographs, p. 16), a difficult walking route, follows part of this river as it passes through several tight gorges and descends a series of spectacular waterfalls. In contrast, coarse-grained tuffs are more easily weathered and tend to produce more rounded hills. The weathered layer at the surface is thicker, and boulder-fields (IN10, p. 39) are strewn across the ground, resulting in an appearance similar to that of granite landscapes (p. 21).

In parts of Hong Kong, such as the Pat Sin Leng in Plover Cove Country Park, volcanic and sedimentary rocks occur together. Both have been tilted by past earth movements, giving rise to steep, rocky inclines on one side of the mountain

The steep southern scarp face of the Pat Sin Leng is shown here cutting across inclined layers of volcanic and sedimentary rocks. The highest point in the photograph is Wong Leng, which rises to 639 m above sea level.

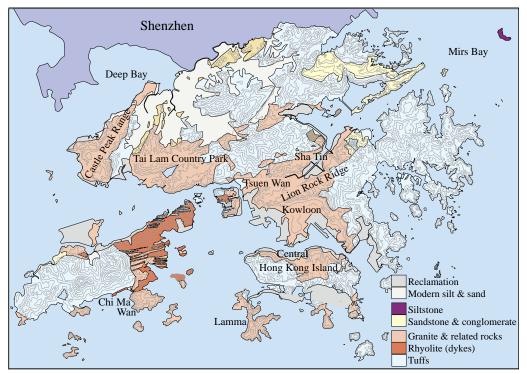
These steep slopes, above the small beach at Long Ke Tsai (southeastern Hong Kong), are underlain by volcanic rocks. At the coast, erosion by the sea has produced a laterally extensive fringe of rocky outcrops up to about 10 m high and which locally form steep cliffs.

and gentle slopes on the opposing side that follow dipping rock layers. These asymmetrical ridges are called cuestas (IN03, p. 18).

Volcanic rocks also form many of the coasts of Hong Kong. Where they are exposed to the South China Sea, they tend to form prominent vertical cliffs. In these settings, powerful ocean waves undercut the tuffs, which then collapse. However, because the rocks are hard, they remain upstanding, except where they have been weakened by faults (IN08, p. 35) or joints (IN09, p. 37). The best examples of these landscapes can be seen along the southern and eastern shorelines of Hong Kong.

The rugged mountains of Hong Kong constitute its most dramatic natural settings. However, there are other landform types that also demonstrate the relationship between scenery and rock type, including rounded hilly landscapes (underlain by granitic rocks), as noted in the next section.

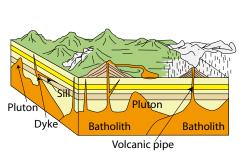
The cliffs of Bluff Island, in southeast Hong Kong, were formed by high energy waves that eroded the tuffs along the exposed coastline. Where faults orjoints (cracks) occur, the rocks are weaker and more easily eroded, and sea caves develop.


ROUNDED HILLY LANDSCAPES: THE ROOTS OF VOLCANOES

Today, the roots of ancient volcanoes create very distinctive landscapes in Hong Kong. These roots were the magma chambers that were once located 1–2 km below the ancient land surface. Over time, the hot molten magma cooled and solidified to form the rock granite. Millions of years of subsequent erosion stripped away the overlying rocks (IN04, p. 22), exposing the granite over one-third of the land area of Hong Kong, forming bold, rounded rock surfaces.

These granite regions tend to be lower and more gentle in appearance than the volcanic landscapes described in the previous section. Rounded boulders are generally strewn across the surface (p. 20). In some areas, there are dense networks of deep gullies cut into the upper layer of chemically decayed (weathered) rock.

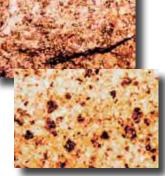
The granitic rocks that underlie these areas extend across much of the western New Territories, including the Tai Lam Country Park and the Castle Peak Range. They also make up the Lion Rock Ridge, the Chi Ma Wan Peninsula, and parts of the southern offshore islands. Granite also forms the flat ground and isolated hills below urban Kowloon and Central.


The hot, humid, sub-tropical summers in Hong Kong cause chemical breakdown of granites. Consequently, granite terrains are usually characterised

Granitic rocks cover about 35% of the land area of Hong Kong, mainly forming gently rounded hills, although they also underlie the relatively flat areas of Kowloon and the steep slopes of northern Hong Kong Island.

IN04 Intrusive Igneous Rocks

Igneous rocks solidify from magma that has cut its way into the crust or which has erupted at the surface. Rocks formed in the former manner are referred to as intrusive. They may have cooled within small-scale, sheet-like dykes (cutting across the rock layers) or sills (lying parallel to the rock layers). Larger bodies of magma form


plutons, and the largest accumulate in batholiths. Most magma in Hong Kong originated in plutons. The mode of intrusion is important to the appearance of the rocks. Small intrusions cool relatively quickly, and crystals only grow to a small size. Larger intrusions cool very slowly, and crystals can grow larger. The chemistry of the magma also controls the final rock type. Magma that developed in Hong Kong originated from melting along a plate boundary (p. 14; IN23, p. 105); it is rich in silica. Upon cooling, this magma type generates granite (in plutons) and rhyolite (in dykes and sills).

Intrusive Rocks in Hong Kong:

Granitic rocks form through slow cooling of magma in major intrusions. Crystals can grow very large. The minerals are dominated by several types of feldspar (white/grey to pink), less commonly by quartz (glassy, grey), and by a small percentage of dark minerals, usually hornblende or biotite. Variation in the proportions of these minerals is the basis for recognising different kinds of granitic rock. Granite (left) contains

mainly alkali feldspars that are rich in sodium and potassium. Granodiorite (top right) has a little more calcium-rich feldspar (plagioclase), whereas monzonite (lower right) has less quartz and

roughly equal proportions of alkali and plagioclase feldspars.

Basalt is a dark grey-to-black, very fine-grained rock. It is rare in Hong Kong, occurring in dykes, as in this photograph. In other parts of

the world, basalt is much more common, forming mainly as lava flows at the surface. Rhyolite forms as a lava or within dykes. In Hong Kong, it is mainly present in dykes. When w e a thered,

rhyolite may develop parallel striations on the surface (top left) caused by minerals that lined up parallel to one another as the magma was intruded. In some cases, large feldspar crystals have grown within a finer-grained matrix (centre and lower right).

The rounded hills, strewn with granite boulders behind Lung Kwu Tan (western New Territories), are typical of granite landscapes.

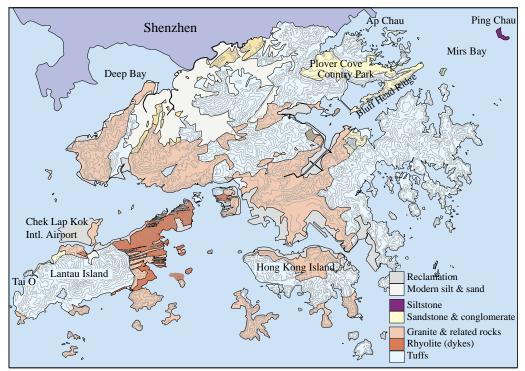
by thick sequences of loose, chemically decayed rock, called a weathering profile (IN51, p. 177). In some cases, the layer of decayed rocks can be well over 100 m These loose and weak materials thick. are particularly susceptible to erosion and gullying, especially after vegetation has been removed. Deforestation has occurred widely in Hong Kong in the past, and this has resulted in severe erosion of many granitic areas, although reforestation efforts since World War II have reduced the problem and hidden many of the old scars on the landscape.

Boulders are commonly strewn across granite hills. They are unaltered, rounded rocks that formed as corestones (IN10, p. 39), surviving the weathering process and remaining on the land surface as the surrounding, decayed material was removed by erosion. The boulders form a distinctive element of the granitic hills in Hong Kong: piles of rock called tors.

The Castle Peak Range, in western Hong Kong, shows dramatic erosion, particularly along ridge tops. Many other granitic areas in Hong Kong experienced similar erosion, but extensive reforestation since World War II has been gradually hiding the scars on the landscape.

Gully erosion can be very deep, as can be seen along this old military road in the Castle Peak Range.

Granite tors are common in the western New Territories.


RIDGES AND COLOURFUL LANDSCAPES: ANCIENT SEAS, RIVERS, LAKES, AND DESERTS

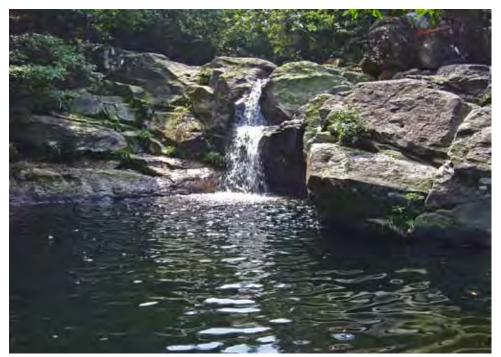
Over the last 400 million years, environments in Hong Kong have changed radically (p. 7–10). There have been several phases of volcanism, but at other times, ancient seas, river plains, lakes, and deserts have developed. Sediments that accumulated in these varied settings were subsequently buried and then transformed into rocks. Today, these layered rocks form beds (IN05, p. 26) that later earth movements have tilted to varying degrees. In some cases, the layers are gently sloping and form asymmetrical ridges, or cuestas (IN03, p. 18). In other instances, the beds

The Bluff Head Ridge to the south of Plover Cove (above) is underlain by very steeply dipping sandstones and mudstones that were formed in river systems about 400–360 million years ago.

have been upturned so that they are almost vertical. The vertical beds, in turn, produce distinctive linear ridges. These sedimentary rocks are confined to the mainland and islands of northeast Hong Kong (p. 24), and small parts of northern Lantau. They underlie about 5% of the total land area of Hong Kong.

Sedimentary rocks in Hong Kong mainly occur in northeastern Plover Cove Country Park and on the island of Ping Chau. Sedimentary rocks are also present along the northern coast of Lantau, between Tai O and Chek Lap Kok.

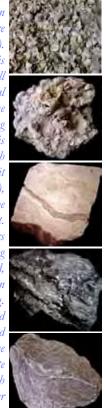
IN05 Beds, Bedding Planes, and Time


Sedimentary rocks originate as a series of layers or beds. Each bed represents a single depositional event. The laying down of the sediment may have been rapid, taking only a few seconds to occur, or the bed might represent the slow accumulation of fine-grained clay and silt over a long uninterrupted period.

The beds are separated by discontinuities called bedding planes. These are breaks along which the rocks tend to split relatively easily. They usually indicate a period when no sediment was being deposited. There is no easy way to determine how long that time period was. It could range from several seconds to many years. Geologists believe that most of geological time

Thin, steeply dipping, mudstone beds control the shape of this hillside on Shek Uk Shan, Sai Kung Country Park.

is represented by these gaps in the record. Beds may also vary substantially in thickness from a few millimetres to several metres. Beds can produce a stepped-appearance as the ground follows the rock layers. The thickness of beds controls the size of these steps and the general appearance of the landscape. Note the contrast between the thin, steeply dipping (sloping) beds in the upper right photograph with the scenery in an area of thickly bedded and gently dipping sedimentary rocks (below).


The sandstone beds above (Ping Fung Shan, Plover Cove Country Park) are thicker than the sedimentary layers in the top photograph. They are also more gently inclined, imparting a different texture to the two landscapes.

Grain Size (mm)	Name of the Size Class	Sediment Name		Rock 1	Vame	Example
>256	Boulders	Boulders, cobbles, pebbles, granules			. (
64–256	Cobbles			cobbles, round in shape, or pebbles, breccia if the		Miles I
4–64	Pebbles					
2–4	Granules			Pur rece ur	e unginun	
1–2	Very coarse sand	Sand				
1/2-1	Coarse sand					
1/4-1/2	Medium sand			Sands	tone	
1/8-1/4	Fine sand					A REAL OF
1/16-1/8	Very fine sand					
1/16-1/256	Silt	Silt	Mud (a mixture of silt & clay)	Siltstone	tone	
<1/256	Clay	Clay		Claystone	Mudstone	

Classification of detrital sediments and sedimentary rocks. Both systems use grain size. Loose pebble and sand deposits are shown on the upper and centre right. The rock siltstone (lower right; with white calcite) is composed of finer particles.

Sediments can be divided into chemical, biochemical, and detrital types. After they are laid down, processes associated with burial will turn the loose materials into solid rocks. Chemical rocks initially precipitate from a solution; they are rare in Hong Kong. Examples occur on Ping Chau (northeastern Hong Kong), where salts were laid down, together with mud, in a desert lake that periodically dried out. Biochemical rocks, such as limestone, originate from an accumulation of the skeletons of organisms. Coal is another example because the carbon originates from plants that extracted carbon dioxide from the atmosphere.

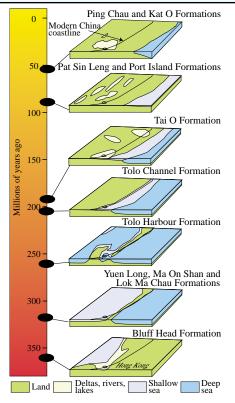
Sedimentary rocks and sediments that occur in Hong Kong are mostly detrital in origin and are distinguished by the size of their constituent particles (table above). Detrital sediments result when older rocks are eroded into fragments. These are then washed down rivers, blown by the wind, transported by glaciers, or moved in other ways. The particles eventually come to rest in rivers, lakes, seas, or other settings. Shell accumulations often develop on beaches and when partially consolidated are called coquinas (top right). The solid rock equivalent is limestone (second right; small arrows show individual fossil shells). Limestone is found rarely in Hong Kong. However, when this rock is subjected to high pressure and temperature, it changes to marble (centre), with all evidence of the original fossils being lost. This latter rock occurs in several parts of Hong Kong but only underground, below Yuen Long, Ma On Shan, and Tung Chung. Coal (right) once occurred but long ago was changed by pressure and heat (due to deep burial) to graphite schist (bottom right), which occurs on West Brother Island, north of Lantau.

Ridges and Colourful Landscapes

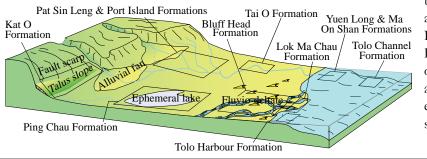
The rocks along the northern side of Tolo Channel are made up of sedimentary sandstones and mudstones, laid down in river channels and on floodplains around 350 million years ago. Originally, they were horizontal, but earth movements have altered their orientation so that they now stand near-vertically. The photograph shows alternating sandstones (light colours) and mudstones (dark) at Bluff Head.

Colours in sedimentary rocks vary considerably. The upper photograph shows dark grey shales interbedded with red- and orange-coloured siltstones caused by iron reacting with oxygen in the atmosphere. The lower left photograph shows red oxidised iron that has accumulated along cracks (joints). In contrast, the black colours in the lower right photograph are caused by manganese oxides.

The layering of sedimentary rocks exerts a pronounced control over the shapes of hills and islands (IN03, p. 18), but these rocks are also characterised by a wide variety of colours that add to the beauty of their landscapes. Iron is particularly important in determining colour. Depending on its precise chemical combinations, it may be red, brown, yellow, green, grey, or even black. Only small quantities of iron are required to generate strong colours. For example, many of the sandstones in the Pat Sin Leng and Port Island Formations (IN06, p. 29), in northeastern Hong Kong, were originally laid down in rivers that periodically dried out. These have deep red colours due to iron combining with oxygen in the atmosphere. Associated finer-grained mudstones and siltstones tend to have purple colours, which also developed at a time when there was a dry landscape (100-80 million years ago). Red colours can also develop in other environments. For example, iron-rich minerals decay near the surface during weathering, releasing iron into water. Then, the water flows along cracks (joints) and, if oxygen is present, iron oxides, such as haematite (Fe2O3) and limonite (FeO.nH2O), may be deposited along the joints, as illustrated in the lower left photograph.


Other elements may also add distinctive hues and variety to landscapes. Manganese, for example, tends to produce black, brown, and purple colours. Carbon usually results in black. Copper tends to yield a range of green colours.

Geologists often group rocks together into formations (IN06, p. 29) based on a variety of evidence. The grain size, composition, colours, and fossils, allow geologists to work out the original settings in which they were laid down. They do


IN06 Sedimentary Formations

Geologists will often group rocks into formations that display similar characteristics and which can be mapped across an area of interest. A formation may range from less than 1 m to several thousand metres in thickness. Sedimentary formations can be distinguished by their grain size, structures, or any other criteria that is useful. Each formation is given a name, usually based on the location where its properties are best exemplified and the rocks are best exposed. The sedimentary rocks in Hong Kong have been divided into eleven formations. The adjacent figure shows the distribution of land and sea when each of these formations were deposited. The modern China coastline and Hong Kong are shown for reference.

Some of these dimentary rocks formed on the land, and others below the sea. The lower diagram shows the environment in which each formation developed. The Bluff Head Formation (400-360 million years old) (conglomerates, sandstones, and mudstones) was laid down in deltas and rivers near the sea. The Yuen Long and Ma On Shan Formations (360-320 million years old) (marble) were formed in shallow seas. The Lok Ma Chau Formation (organic-rich mudstones) accumulated in swampy deltas. Mudstones of the Tolo Harbour Formation (290-250 million years old) were laid down in shallow water. The Tolo Channel Formation

(210-190 million years old) mudstones were deposited in relatively deep water (>20 m), whereas the Tai O Formation sandstones and siltstones were laid down on a river plain. The Pat Sin Leng and Port Island Formations (about 100-80 million years ago) (conglomerates and sandstones) were formed in rivers. The Kat O (breccias) and Ping Chau Formations (within the period 80-50 million years ago) (mudstones and siltstones) were deposited in arid locations. The former developed when large blocks of rock accumulated at

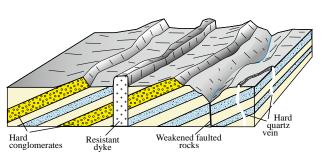
the base of a cliff. The Ping Chau Formation originated in averyshallow, ephemeral, salty lake.

Differential erosion operates at a variety of scales. The left photograph was taken on Ma Shi Chau in Tolo Harbour. A series of beds occur that dip (slope) to the right. The harder siltstones stand about 5–10 cm above the softer mudstones, producing a series of small parallel ridges. On a larger scale, the right photograph shows a prominent cliff and ridge formed by hard conglomerates, also dipping to the right, in western Sai Kung Country Park. Note the band of conglomerates (table, p. 27) continuing into the background and controlling the form of the hillside. The softer rocks here are volcanic in origin.

this by comparing the ancient rocks with similar deposits accumulating in analogous modern environments. This process of comparison has been carried out for the rock formations in Hong Kong. The results indicate that there have been many changes in the prevailing environments over the last 400 million years (p. 7–10).

Landscapes in areas underlain by sedimentary and other layered rocks exhibit distinctive topographical features caused by differential erosion (IN07, p. 31). The combined effects of dipping sedimentary beds (IN05, p. 26) and the occurrence of alternating hard and soft layers produce ridges on a variety of scales, ranging from the Ping Fung Shan Range (IN03, p. 18), at over 600 m, to smaller irregularities, such as those on the islands of Ping Chau and Chek Chau in Mirs Bay (adjacent photographs).

Differential erosion affects the various types of rocks in other ways. They may be fractured by cracks (joints), or by faults. Differential erosion commonly lowers the land surface along these lines of weakness, which is the subject of the following chapter.


Chek Chau lies at the entrance to Tolo Channel and consists of dipping (sloping) volcanic rocks overlain by red sedimentary sandstones (above). The latter originally formed on a dry plain crossed by ephemeral rivers.

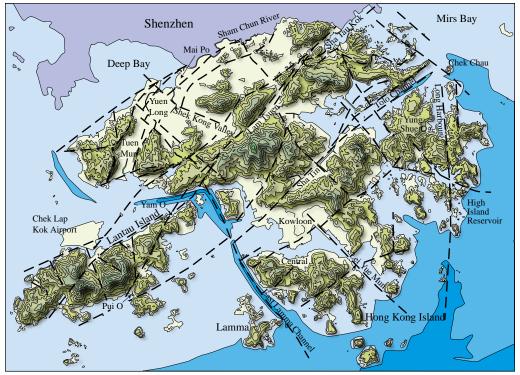
Ping Chau consists of gently dipping fine-grained mudstones and siltstones. These form thin layers that control the shape of the island. Note (above) the step-like pattern of the wave-cut platform. The overall shape of the island follows these sloping rocks.

IN07 Differential Erosion

The word rock is usually synonymous with "hard". However, some rocks are less hard than others. Sedimentary rocks, such as mudstone, shale, and siltstone, are relatively soft, whereas sandstone or conglomerate are generally harder. Natural weathering erosion processes and tend emphasise to these differences. This differential erosion is a

The diagram shows a series of inclined sedimentary rocks. Some layers, such as the conglomerates, tend to be harder than others and stand proud at the surface. Other rocks, such as the dyke and the quartz vein, are also resistant to erosion and form upstanding elements in the landscape. In some cases, rocks can be weakened by faulting, in which case they are preferentially removed by erosion to produce valleys.

powerful force in landscape evolution. Consequently, resistant layers will eventually stand proud above a landscape, whereas softer rocks will form lower areas. The effect occurs at all scales from a small outcrop to the highest mountains. Commonly, rocks that form mountain peaks are harder than the surrounding foothills, those that make ridges are harder than the rocks that comprise valleys, and any upstanding outcrop is harder than adjacent depressions.


Harder rock layers are sometimes caused by secondary effects. Here a prominent siltstone ridge stands about a metre above its surroundings. This layer has been made resistant by a network of quartz (white) veins, as shown in the inset.

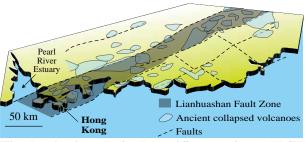
LOWLANDS AND VALLEYS: FRACTURED ROCKS AND RIVERS

Faults, large and small, are zones of weakness in the earth's crust that control the locations of Hong Kong's rivers and plains. Most valleys reflect the combined influence of fracturing of rocks by faulting and erosion by rivers. This is apparent when the pattern of faults is overlain on a topographical map (figure below).

There are three main fault orientations in Hong Kong. The largest valleys follow a NE-SW alignment, as shown by the Sha Tin Valley and its extension along Tolo Channel (a flooded river valley). Other faults that run parallel to this trend control the configuration of several valleys on Lantau (Pui O to Yam O Wan), the Lam Tsuen Valley, and the Sha Tau Kok Inlet. Similar NE-SW faults extend from the border to Tuen Mun, and have contributed to the formation of the lowlands near Yuen Long and the mangrove-fringed coastal plains of Mai Po (p. 32). These latter lowlands are underlain by marble (IN11, p. 51) and also owe their existence, in part, to a faster lowering of the surface of these rocks (IN07, p. 31).

Other valleys (e.g. Shek Kong; and below the High Island Reservoir; along the Lei Yue Mun Gap; and the East Lamma Channel follow a NW-SE fault direction. A third fault trend, N-S, guides the orientation of, for example, Long Harbour and the sea floor topography in southeastern Hong Kong.

Faults control the orientation of valleys, plains, and sea floor channels in Hong Kong. This can be seen in both the onshore and offshore topography, which displays three major orientations: NE-SW, NW-SE, and N-S.


Shek Kong lies at the upper end of a fault-controlled valley that extends through Kam Tin to the Yuen Long Plain in the left background. The peaks of Kai Kung Leng, Tai To Yan, and Kwun Yam Shan are dominated by volcanic rocks.

The inset shows white clay (kaolin) along a fault (IN08). The clay formed as a result of decay of feldspars in the crushed rock.

Movement along faults causes rocks to fracture or even melt due to frictional heating. Faults may occur as sharp breaks, form wide zones of crushed rock (IN08, p. 35), or occur as sets of closely spaced fractures. Thev promote an increase in the depth of weathering because they create planes along which water can flow and enhance chemical decay (left photograph). Faults may be small-scale, just a few metres long and with a displacement of only a few centimetres, or they may be much larger extending over tens of kilometres and with much larger movements. Most faults are steeply inclined and form straight valleys, such as occur at Shek Kong and Kam Tin (photograph above).

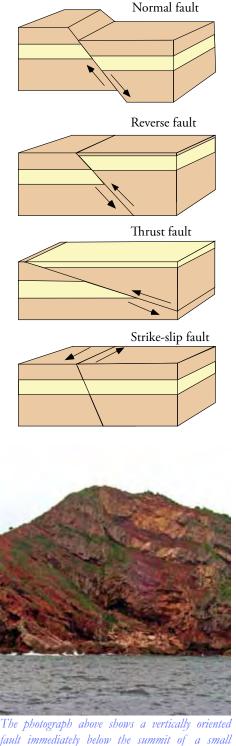
Hong Kong faults form part of a much more extensive structural trend. This is referred

The Lianhuashan Fault Zone follows a long NE-SW trend across much of southern China and Hong Kong.

to as the Lianhuashan Fault Zone, which extends along the coast of southeast China and controls the regional orientation of many of its landforms.

Several types of faults can be distinguished, based on their style of movement (IN08). As noted earlier, the dominant faults in Hong Kong follow a NE-SW

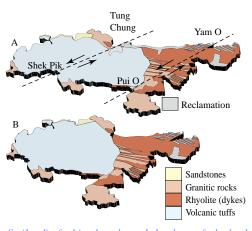
IN08 Types of Fault


Faults are fractures in rocks caused by movements of the earth's crust. They also involve movement of the rocks on one or the other side of the fault plane. Several types can be distinguished, depending on the direction of movement. A normal fault occurs when the rock above a fault plane moves downwards. In contrast, reverse faults display an upwards movement of the rocks above the fault plane. A thrust fault is similar to a reverse fault, except that the fault plane lies at a more gentle angle. Strikeslip faults involve only lateral movement. In some situations, both vertical and horizontal movements can take place and the term "oblique fault" is applied.

The type of fault that develops depends on the stresses within the rocks. Normal faults occur when rocks are pulled apart (tension), whereas reverse and thrust faults form when rocks are squeezed (compression). Strike-slip faults occur where stresses are mainly lateral.

Faults may be sharp breaks (right photograph), or they may be associated with wide zones of crushed rocks (lower photograph). Sometimes they are filled by mineral veins formed at a later stage.

A crush zone (between the lines) marks a fault. The offset is an illusion caused by a flat platform.



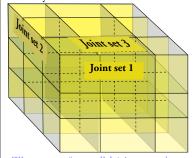
fault immediately below the summit of a small hill on Chek Chau (northeastern Hong Kong). Note the sharp break with a distinct offset in the dipping sandstones on either side of the fault.

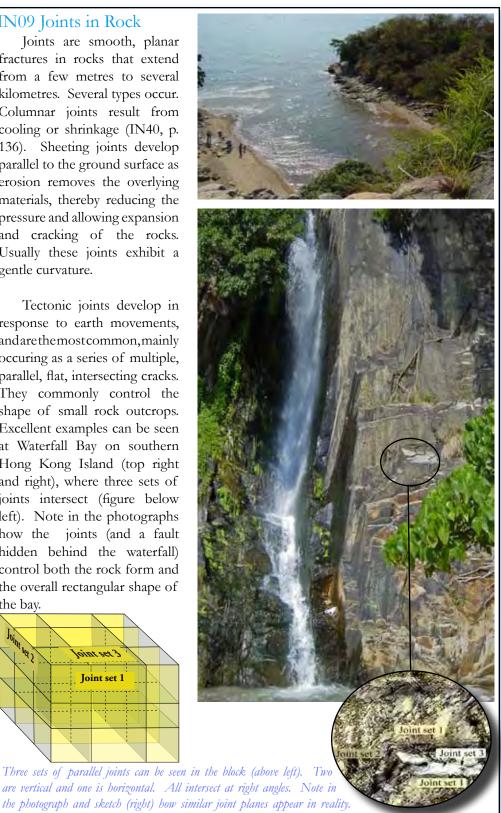
Lowlands and Valleys

orientation and control the alignment of the major valleys. These particular faults are mainly of the strike-slip type (IN08, p. 35) and are spaced about 6-12 km apart. Movement along the fault planes has been predominantly sideways (horizontal) and has occurred intermittently through the last 300 million years or so. Total movements, up to 3 km, have been responsible for changing the relative position of rocks on either side of the faults and for determining the shape of the ground. Lantau Island provides a good example. It is crossed by two major strike-slip faults that have caused displacement of the rocks (A and B in the adjacent figure) and have elongated the shape of the island.

Faults are not the only kinds of fractures that affect landscapes. Joints (IN09, p. 37) are also cracks, but they do not involve movement on either side of the fracture surface. They tend to produce

Strike-slip faulting has changed the shape of the land that is now Lantau Island. Repeated slow movements along two NE-SW-trending faults have shifted the rocks sideways by up to 3 km (Figure A). If the effects of these movements are removed, the original relationships of the rocks can be reconstructed. This has been done in Figure B. Note the resulting circular shape for the outcrop of the tuffs on western Lantau, which reflects their accumulation within an ancient caldera (a circular depression created by the collapse of a volcano).




This photograph shows a series of well-developed, parallel joints in a volcanic tuff on Yim Tin Tsai (Plover Cove). These near-vertical joints act as planes of weakness that are opened up by weathering and erosion. Smaller joints and other cracks within the rock are responsible for the crisscross patterns on the rock surface.

IN09 Joints in Rock

Joints are smooth, planar fractures in rocks that extend from a few metres to several kilometres. Several types occur. Columnar joints result from cooling or shrinkage (IN40, p. 136). Sheeting joints develop parallel to the ground surface as erosion removes the overlying materials, thereby reducing the pressure and allowing expansion and cracking of the rocks. Usually these joints exhibit a gentle curvature.

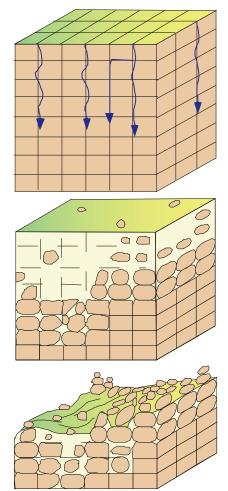
Tectonic joints develop in response to earth movements, and are the most common, mainly occuring as a series of multiple, parallel, flat, intersecting cracks. They commonly control the shape of small rock outcrops. Excellent examples can be seen at Waterfall Bay on southern Hong Kong Island (top right and right), where three sets of joints intersect (figure below left). Note in the photographs how the joints (and a fault hidden behind the waterfall) control both the rock form and the overall rectangular shape of the bay.

blocky, angular shapes in outcrops (IN09, p. 37). Joints mostly develop while rocks are buried under several kilometres of overlying materials. Their formation reflects the brittle nature of rocks and the stresses that are imposed on them by earth movements.

Similar to faults, joints are planes of weakness that influence the weathering and breakdown of rocks and, in turn, the development of landscape. They often intersect nearly at right angles, with streams, valleys, and coastlines commonly following these rectilinear patterns. Intersecting joints (IN09, p. 37) also add texture to valley sides and hilltops through the formation of blocky rock outcrops and the development of boulder fields (IN10, p. 39).

Boulder fields form where several joint sets (at least three or more) intersect (IN09, p. 37; IN10, p. 39). Commonly the rocks are also characterised by relatively large grain sizes and minerals, such as feldspars, that can be easily broken down chemically. The example above shows a boulder field formed from volcanic rocks on Luk Chau Shan in the northern part of the Ma On Shan Country Park. Boulder fields are usually best developed on granitic rocks. Excellent examples of the latter can be found on the western slopes of the Castle Peak Range in the western New Territories (below). In this area, abundant, well-rounded boulders are spread across many of the hillsides.

IN10 Boulder Fields and Joints


Boulder fields are loose accumulations of large, usually rounded, detached boulders that lie strewn across a land surface. They begin to develop when water slowly percolates down joints, weathering and weakening the original rock material on the edges of joint blocks and leaving a central rounded corestone of relatively undecayed material. The process that leads to the formation of corestones is called spheroidal weathering (adjacent photograph). When the rock is exposed at the surface, erosion begins to remove the surrounding loose rock debris, leaving behind fresh corestones over the land surface.

Stage 1. Fresh jointed granite or coarse-grained tuff. Rain seeps down intersecting joints and begins chemical weathering along these planes of weakness. Weathering is greatest at corners where the water can promote chemical breakdown from three sides. Weathering is moderately strong at edges, with only two sides to attack, and slowest in the middle of a block face. The result is that weathering gradually makes the fresh joint block rounder, producing the typical form of a corestone boulder.

Stage 2. Chemical weathering causes rock to decay mainly by the breakdown of minerals such as feldspars to new minerals, typically clays. In Hong Kong, this is usually to a white clay called kaolin. As the process continues, rounded boulders develop that are more common and larger in the lower part of the profile. Isolated fresh boulders accumulate on the surface as the ground is lowered by erosion.

Stage 3. Further erosion removes most of the loose, weathered material. Exhumed corestones of fresh unweathered rock gradually accumulate on the surface, which by now has been considerably lowered. In some instances, boulders will be left resting on top of each other to form a feature called a tor.

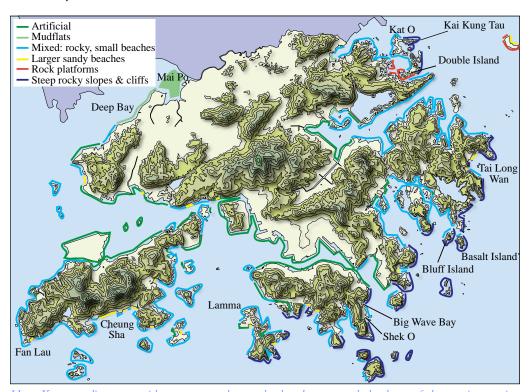
COASTAL LANDSCAPES: CLIFFS, BEACHES, AND MUD FLATS

Coastlines reflect the interplay between geology (rock type, faults, and joints) and marine processes (erosion and deposition). These factors vary from place to place, resulting in the variable development of cliffs, beaches, and tidal mud flats along different sections of the coastline. Hong Kong's highly indented coast is about 350 km long and shows a marked contrast between west and east. The western shores tend to have a more subdued appearance (photograph below), with gentler slopes and either rocky or muddy coasts. In contrast, eastern areas tend to be much more rugged, with abrupt, near-vertical rocky cliffs (p. 40) and sandy bays.

The Western Region

Shorelines in this region are generally low-lying and depositional. Deep Bay, in the northwest, is very shallow, with extensive mud flats and fringing swamps, especially near the Sham Chun River mouth. An important mangrove community is established on the mud flats, with a rich and varied fauna, particularly of shellfish. Mangrove stems slow the tidal currents in the area, which promotes settling of the fine-grained suspended sediments and the seaward extension of the mud flats.

In contrast, the coastline adjacent to the granite uplands of the Castle Peak Range


Extensive tidal flats form the northwest coastline of Hong Kong. These can be seen just beyond the fringe of Mai Po mangroves next to the road. The area also includes fish ponds and gei wei wetlands where shrimps are harvested.

is comprised of a narrow, low-lying, coastal zone. Several sandy beaches, of varying size, alternate with accumulations of large rounded boulders derived by slope failure from the adjacent hillsides.

Lantau, the largest of Hong Kong's 262 islands, has a varied coastline (map below). In the north, volcanic and sedimentary rocks have produced rocky

shorelines, with beaches and mudflats in bays protected from waves. During the last decade, much of the north has been altered by reclamation for the North

Small beaches (and a few larger ones) alternate with areas of large well-rounded boulders along parts of the southern Deep Bay coastline. The boulders originated on the neighbouring granitic slopes and have been moved to the shoreline by landslides.

Hong Kong coastlines vary with exposure to the sea, local rock types, and the degree of human intervention. The map shows the dominance of sea cliffs and steep rocky slopes in the southeast. Northwesterly shores tend to consist of steep rocky slopes plunging into the sea (without cliffs) or areas of mud- or sand-flats. Several types of wave-cut platforms occur in the northeast. Beaches are best developed on southeasterly facing shores. Artificial coastlines occur around Victoria Harbour, northern Lantau, inner Tolo Harbour, and the western New Territories. Place names indicate the locations of coastal features shown in photographs in this section.

Lantau Expressway. In contrast, the south is less developed. These coasts are exposed to stronger waves from the South China Sea and are characterised by rocky shores and extensive beaches, including Cheung Sha Beach, the longest in Hong Kong. In the southwest, granitic rocks (photograph below) have produced beaches and rocky, boulder-strewn coasts.

The Central Region

Hong Kong Island displays similar variety to that of Lantau. Most of the north shore has been reclaimed for urban development over a period of more than a century. There are several prominent peninsulas in the south, notably Stanley and Cape D'Aguilar, that have a gently sloping rounded form on their higher slopes. These inclines tend to become steeper lower down and, locally, may form sea cliffs. Commonly, large piles of boulders lie at the base, having fallen from above. Similar rounded hills and coastal

Lantau Island has been experiencing a radical change in its coastal landscapes since the development of the Chek Lap Kok Airport, In recent years, the northern shores have been significantly altered by infrastructure developments such as the expressway shown in the photograph above. Pressures on the area are increasing with several schemes for additional reclamation having been proposed.

The southwestern tip of Lantau, Fan Lau, consists of a remote, rocky, granite promontory, isolated beaches, and bouldery shorelines. Several islands belonging to mainland China can be seen along the horizon. These have suffered considerably from aggregate quarrying in recent years.

cliffs are also present on neighbouring Po Toi, Beaufort Island, and Lamma.

The southern headlands on Hong Kong Island also enclose bays with extensive beaches, such as Sham Shui Wan (Deep Water Bay), Heung To Wan (Shek O), Tin Shui Wan (Repulse Bay), and Tai Long Wan (Big Wave Bay). The sand here owes its existence to the southerly facing coast, which has exposed these shores to strong ocean waves. However, in the past, major typhoons removed large volumes of sand from parts of these coastlines. The beaches were replenished artificially in the early 1990s. Victoria Harbour is surrounded by artificial coastlines and highrise buildings and offers one of the most exciting human landscapes in the world.

Coastlines on southern Hong Kong Island consist of eroded headlands, and bays where deposition occurs. Waves move the eroded material to the bead of adjacent bays, such as those at Shek O (below), where it contributes to the beaches. Most of the sand, however, is supplied by rivers.

The Eastern Region

Shorelines in the east and southeast are generally erosional. The coast is mostly made up of finegrained volcanic rocks that, in some places, have welldeveloped vertical joints (IN09, p. 37; IN40, p. 136). The action of the sea on these rocks has created a distinctive coastline with high, precipitous cliffs, especially in the extreme southeast. For example,

Bluff Island (photograph below) is rimmed by the tallest cliffs in Hong Kong, which reach over 140 m high.

In many places, the cliff faces are penetrated by sea caves. Sea arches develop where extreme erosion has occurred. Collapsed arches have, in a number of places, produced small isolated islands called stacks (figure, p. 138). Sea caves

The southeastern coastline is characterised by high and rugged cliffs, such as those shown above, on Wam Tam Shan (Basalt Island), and below, on Sha Tong Hau Shan (Bluff Island). The cliffs are particularly distinctive because of the numerous vertical columns that occur in this area. These originally formed by cooling of hot volcanic ash, which causes hexagonal vertical joints to develop (IN40, p. 136). Today, they are being attacked by powerful ocean waves, with the columnar shapes guiding the form of the cliffs.

Coastal Landscapes: The Eastern Region

are common along the coast and on many islets between Tai Long Wan and Basalt Island (eastern Sai Kung Country park). Unusually, Tai Chau (adjacent photograph) is penetrated by an underwater cave that runs the entire width of the island.

Rugged cliffs also occur in the extreme northeast of Hong Kong, such as on parts of Kat O. However, wave erosion on several other islands has cut gently sloping rock platforms into the sedimentary and volcanic rocks. Around Double Haven, most of these platforms occur slightly above the current high tide level (e.g. on Crooked Island, Crescent Island, and Double Island). Elsewhere, such as around Hok Tsui and Ping Chau, these platforms lie below the high tide level.

Crooked Island, or Kat O, has a finger-like shape. The photograph below shows Kai Kung Tau at the end of one such finger. Note the eroded cliffs on this exposed coastline. Wong Wan Chau, or Double Island (right), lies in more protected water. There, wave erosion and weathering processes have combined to generate flat platforms just above the high tide level.

Tai Long Wan (above) contains three islands of volcanic rock. Lan Tau Pai is the very small islet to the left. Tai Chau is the large central island, and Tsim Chau lies to the right. An underwater cave runs below Tai Chau.

INFORMATION SOURCES AND FURTHER READING

This work has made use of an extensive range of data sources, as well as the authors' own previous works. Major sources are listed in Part I, with other references that have been used less intensively in Part II. Part III includes minor source materials and other books and articles about Hong Kong, grouped into categories for ease of reference. The selection is not comprehensive but will allow readers to pursue individual topics of interest.

PART I: Publications Referred to Extensively

Hong Kong Animals by D. Hill & K. Phillips, Hong Kong Government Printer, 1981, 281p.

- Hong Kong Country Parks by S.L. Thrower, Hong Kong Government Information Services, 1984, 216p.
- Hong Kong Landscapes, Along the MacLehose Trail by R.B. Owen & R. Shaw, Geotrails, 2001, 203p.
- *The Pre-Quaternary Geology of Hong Kong* by R.J. Sewell, S.D.G. Campbell, C.J.N. Fletcher, K.W. Lai, P.A. Kirk, Hong Kong Geological Survey Memoir, 2000, 181p.
- *The Quaternary Geology of Hong Kong* by J.A. Fyfe, R. Shaw, S.D.G. Campbell, K.W. Lai, P.A. Kirk, Hong Kong Geological Survey Memoir, 2000, 209p.
- The Geology and Exploitation of the Ma On Shan Magnetite Deposit by P.J. Strange & N.W. Woods, Geological Society of Hong Kong Newsletter, 1991, 9(1), pp. 3–15.
- The Geology and Exploitation of the Needle Hill Wolframite Deposit by K.J. Roberts & P.J. Strange, Geological Society of Hong Kong Newsletter, 1991, 9(3), pp. 29–40.
- The Geology and Exploitation of the West Brother Island Graphite Deposit by N.W. Woods & R. L. Langford, Geological Society of Hong Kong Newsletter, 1991, 9(2), pp. 24–35.
- *The Story of Lin Ma Hang Lead Mine, 1915–1962* by T. Williams, Geological Society of Hong Kong Newsletter, 1991, 9(3), pp. 3–27.

PART II: Publications referred to less extensively

1. Geological

- Distant-earthquake Simulations Considering Source Rupture Propagation: Refining the Seismic Hazard of Hong Kong by K. Megawati & A.M. Chandler, Earthquake Engineering and Structural Dynamics, 2006; 35, pp. 613–635.
- Geology of North Lantau Island and Ma Wan by R.J. Sewell & J.W.C. James, Hong Kong Geological Survey Sheet Report No. 4, Geotechnical Engineering Office, Hong Kong Government Printer, 1995, 46p.
- Geomorphological Observations on Rainwash Forms in Hong Kong and some other Humid Regions of Southeast Asia by H-L Tschang, The Chung Chi Journal, 1972, 11, pp. 40–59.
- Geotechnical Area Studies Programme—Territory of Hong Kong by K.A. Styles & A. Hansen, Geotechnical Control Office, Civil Engineering Services Department, Hong Kong. GASP Report, 1989. No. XII, 346p plus 15 maps.
- Hong Kong Geological Survey Memoir No. 1: The Geology of Sha Tin by R. Addison & R.J. Purser, Hong Kong Government Printer, 1986, 85p.

- Hong Kong Geological Survey Memoir No. 2: The Geology of Hong Kong Island and Kowloon by P.J. Strange & R. Shaw, Hong Kong Government Printer, 1986, 134p.
- Hong Kong Geological Survey Memoir No. 3: The Geology of the Western New Territories by R.L. Langford, K. W. Lai, R.S. Arthurton & R. Shaw, Hong Kong Government Printer, 1989, 140p.
- Hong Kong Geological Survey Memoir No. 4: The Geology of Sai Kung and Clearwater Bay by P.J. Strange, R. Shaw & R. Addison, Hong Kong Government Printer, 1990, 111p.
- Hong Kong Geological Survey Memoir No. 5: The Geology of the Northeastern New Territories by K.W. Lai, S.D.G. Campbell & R. Shaw, Hong Kong Government Printer, 1996, 144p.
- Hong Kong Geological Survey Memoir No. 6: The Geology of Lantau District by R.L. Langford, J.W.C. James, R. Shaw, S.D.G. Campbell, P.A. Kirk & R.J. Sewell, Hong Kong Government Printer, 1995, 173p.
- Preliminary Vegetation Maps of the World since the Last Glacial Maximum: An Aid to Archaeological Understanding by J. M. Adams & H. Faure, Journal of Archaeological Science, 1997, 24, pp. 623–647.
- The Influence of the Pearl River on the Offshore Geology of the Macao—Hong Kong area by R. Shaw & J.A. Fyfe, Proceedings of the International Conference on the Pearl River Estuary in the Surrounding Area of Macao, 1992, pp. 247–255.
- The Map That Changed the World: A Tale of Rocks, Ruin and Redemption by Simon Winchester, Penguin Books, 2002, 238p.
- Updating of Hong Kong Geological Survey 1:20,000 Maps. Major Findings and Revisions Map Sheet 7—Sha Tin by R.J. Sewell & J.C.F. Wong. GEO Report No. 179, 2006, 29p.
- Urban Geological Mapping—Techniques used in Kowloon and Hong Kong by P.J. Strange, In: The Role of Geology in Urban Development, Geological Society of Hong Kong Bulletin No. 3, 1987, pp. 181–189.
- Urban Geology and the Impact on Our Lives: Samples from Daily Life in Bangkok. Atlas of Urban Geology: Volume 13 by United Nations Economic and Social Commission for Asia and the Pacific, United Nations, New York, 2001, 80p.
- Variations in Sub-tropical Weathering Profiles over the Kowloon Granite, Hong Kong by R. Shaw, Journal of the Geological Society, London, 1997, 154, pp. 1077–1085.

2. Natural History

A Pilot Biodiversity Study of the eastern Frontier Closed Area and North East New Territories, Hong Kong, June-December 2003 by Kadoorie Farm and Botanic Garden, Hong Kong Special Administrative Region, 2004, 67p.

Birds of Hong Kong by C. Viney & K. Philips, Hong Kong Government Printer, 1986, 214p.

Conservation of Corals in Hong Kong by P.O. Ang, Proceedings of IUCN/WCPA-EA-4 Taipei Conference March 18–23, 2002, Taipei, Taiwan, pp. 277–295

- Hong Kong Amphibians and Reptiles by S.J. Karsen, M.W.N. Lau & A. Bogadek, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1986, 136p.
- Hong Kong Insects by D.S. Hill & W.W.K. Cheung, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1988, 128p.
- Hong Kong Insects: Volume II by D.S. Hill, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1982, 144p.

Hong Kong Island and Po Toi Island, Friends of the Earth, Coastal Guide Series, 1998, 29p.

Hong Kong Mangroves by N. Tam & Y. Wong, City University of Hong Kong Press, 2000, 148p.

Information Sources and Further Reading

Hong Kong Trees: Omnibus Volume by S.L. Thrower, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1988, 438p.

Lantau Island, Friends of the Earth, Coastal Guide Series, 1997, 27p.

Lamma Island, Friends of the Earth, Coastal Guide Series, 1995, 19p.

The Corals of Hong Kong by P.J.B. Scott, Hong Kong University Press, 1984, 112p.

3. Human Impacts and History

A History of Hong Kong by F. Welsh, Harper Collins, 1993, 624p.
An Illustrated History of Hong Kong by N. Cameron, Oxford University Press, 1991, 362p.
Chinese Graves and Gravemarkers in Hong Kong by C. Chow & E. Teather, Annual Journal of the Association for Grave-stone Studies, 1998, pp. 286-336.

City of Victoria: A Selection of the Museum's Historical Photographs by The Urban Council of Hong Kong. Hong Kong Museum of History, 1994, 107p.

Feng Shui by S. Rossbach, Rider, London, 1990, 169p.

- Forts and Pirates: A History of Hong Kong by Y.C.A. Lui, K.K. Siu, T. Stanley & C.N.C. Lui, Hong Kong History Socety, 1990, 114p.
- Forts and Batteries: Coastal Defence in Guangdong During the Ming and Qing Dynasties by K.K. Sui, Urban Council of Hong Kong, 1997, 125p.
- Hong Kong's New Towns: A Selective Review by R. Bristow, Oxford University Press, 1989, 385p.

Hong Kong—The Colony That Never Was by A. Brich, Odyssey, 1991, 160p.

Martyrs, Mystery and Memory Behind the Colonial Shift by S.C.H. Cheung, ASA Conference, 2000, School of Oriental & African Studies, London Participating in Development: Approaches to Indigenous Knowledge 2nd–5th April 2000, 19p.

- Political Disintegration of Hakka Villages: A Study of Drastic Social Change in the New Territories of Hong Kong by M.I. Berkowitz & E.K.K. Poon, Chung Chi Journal, 1969, 8(2), pp. 16–31.
- Remains of War by J. Wordie, South China Morning Post Magazine, 21 November 1999, pp. 10–17.
- The Development of Hong Kong and Kowloon as Told in Maps by T.R. Tregear & L. Berry, Hong Kong University Press, MacMillan and Co., Ltd., 1959, 31p.
- The Hong Kong Region: Its Place in Traditional Chinese Historiography and Principal Events since the Establishment' of Hsin-an County in 1573 by J. Hayes, Journal of the Hong Kong Branch of the Royal Asiatic Society, 1974, 14, 28p.
- The Ruins of War: A Guide to Hong Kong's Battlefields and Wartime Sites by K.T. Keung & J. Wordie, Joint Publishing (HK) Company Ltd., 1996, 216p.

PART III: Further Reading

1. Geographical

- A Geography of China by T. R. Tregear, Aldine Publishing Company, 1965, 342p.
- A Geography of Hong Kong edited by T. N. Chiu & C.L. So, Oxford University Press, 1986, 403p.
- *Geography and the Environment in Southeast Asia* by R.D. Hill & J.M. Bray, Hong Kong University Press, 1978, 485p.
- Hong Kong and its Geographical Setting by S. G. Davis, Collins, London, 1949, 226p.
- Introducing Physical Geography 4th Edition by A. H. Strahler & A. Strahler, John Wiley & Sons Inc., 2005, 752p.
- Mapping Hong Kong : A Historical Atlas by H. Empson, Government Information Services, Hong Kong, 1992, 251p.
- The Development of Hong Kong and Kowloon as Told in Maps by T.R. Tregear & L. Berry, Hong Kong University Press, 1959, 31p.

2. Geological

- A Proposed Revision of the Volcanic Stratigraphy and Related Plutonic Classification of Hong Kong by S.D.G. Campbell & R.J. Sewell, Hong Kong Geologist, 1998, 4, pp. 1–11.
- Geological Landscapes of Hong Kong by The Hong Kong Geological Survey, Hong Kong Government Printer, 1998, 61p.

Geology by S. Chernikoff, Worth Publishers, 1995, 593p.

- Hong Kong Minerals by C.J. Peng, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1978, 80p.
- Second Hutton Symposium on the Origin of Granites and Related Rocks. Excursion C2—Granites of Hong Kong by R. Sewell & R. Langford, Geological Society of Hong Kong Newsletter, 1991, 9(3), pp. 3–28.
- Spatial and Temporal Characteristics of Major Faults in Hong Kong by K.W. Lai and R.L. Langford. In: Seismicity in Eastern Asia, edited by R.B. Owen, R.J. Neller & K.W. Lee, Bull. 5 Geological Society of Hong Kong, 1996, pp. 72–84.

3. Climate and Weather

- *Climate and Weather* by P.C. Chin. In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp. 69–85.
- *The Urban Climate* by W.J. Kyle. In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp. 86–109.

4. Vegetation and Biology

- *Checklist of Hong Kong Plants* by the Hong Kong Herbarium, Agriculture and Fisheries Department, Bulletin No.1, Hong Kong Government, 1978, 142p.
- Hills and Streams, An Ecology of Hong Kong by D. Dudgeon & R. Corlett, Hong Kong University Press. 1994, 234p.
- Hong Kong Bamboos by P. But, L, Chia, H, Fung & S. Hu, Hong Kong Urban Council Publication, Hong Kong Government Printer, 1985, 85p.
- Hong Kong Freshwater Fishes by M.S. Hay & I.J. Hodgkiss, Hong Kong Urban Council, Hong Kong Government Printer, Hong Kong, 1981, 76p.
- Hong Kong Lichens by S. Thrower Hong Kong Urban Council Publication, Hong Kong Government Printer, 1985, 122p.
- Hong Kong Seashells by J. Orr. Hong Kong Urban Council Publication, Hong Kong Government Printer, 1985, 122p.
- Hong Kong's Wild Places: An Environmental Exploration by E. Stokes, Oxford University Press, 1995, 198p.
- *Plants in Mangroves* by S. Aksornkoae, G.S. Maxwell, S. Havanond & S. Panichsuko, Chalongrat, Bangkok, 1992, 120p.
- *Soil* by *C.J.* Grant. In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp. 110–117.
- The Green Dragon—Hong Kong's Living Environment by M. Williams & M. Pitts, Green Dragon Publishing, 1994, 142 p.
- The Sea Shore Ecology of Hong Kong by B. Morton & J. Morton, Hong Kong University Press, 1983, 350p.
- Vegetation by P. C. Catt. In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp. 118–147.

5. Country Parks and Trails

- Across Hong Kong Island: Its Natural Beauty by E. Stokes, Hong Kong Conservation Photography Foundation, 1998, 151p.
- Eagle's Nest Nature Trail by Government Information Services, undated, 28p.
- *Exploring Hong Kong's Countryside* by E. Stokes, Hong Kong Tourist Association & Agriculture and Fisheries Department, 1999, 184p.
- Magic Walks, The MacLehose Trail and its Surroundings by R. Pearce, the Alternative Press, 1995, 190p.
- Selected Walks in Hong Kong by R. Forest & G. Hobbins, A South China Post Publication, Hong Kong, 1979, 96p.
- The MacLehose Trail by T. Nutt, C. Bale & T. Ho, Chinese University Press, Hong Kong, 1992, 137p.

6. Historical

- Beyond the Metropolis: Villages in Hong Kong edited by P.H. Hase & E. Sinn, The Royal Asiatic Society (Hong Kong Branch), Joint Publishing (HK) Company Limited, 1995, 175p.
- From Bondage to Liberation: East Asia 1860–1952 by N. Cameron, Oxford University Press, 1975, 369p.
- In The Heart of the Metropolis: Yaumatei and Its People, edited by P.H. Hase, The Royal Asiatic Society (Hong Kong Branch), Joint Publishing (HK) Company Limited, 1999, 181p

Prelude to Hong Kong by A. Coates, Routledge & P. Kegan, 1966, 232p.

- *The Battle of Hong Kong* by G.D. Johnson, After The Battle Magazine, Number 46, 1984, pp. 1–25.
- The Guns and Gunners of Hong Kong by D. Rollo, Gunners Roll of Hong Kong, 1991, 10p.
- The Hong Kong Story by C. Courtauld & M. Holdsworth, Oxford University Press, 1997, 136p.
- The Lasting Honour: The Fall of Hong Kong 1941 by O. Lindsay, Sphere Books Ltd., 1980, 211p.

7. Urban Studies

- *The New Towns Programme* by W.T. Leung. In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp 251–304.
- *Twenty Years of New Town Development* by the Territory Development Department, Hong Kong Government Printer, 1993, 46p.
- Urban Housing and the Residential Environment by L.S.K. Wong, In: A Geography of Hong Kong, edited by T.N. Chiu & C.L. So, Oxford University Press, 1986, pp. 279-304.

Index

A

adits 78, 99,	114, 167
afforestation 23, 85, 97-99,	132-133
agriculture	61
air-fall eruptions	16
alluvium	57
ammonites	8
amphibians and reptiles	206
ancient settlement	61
Anderson Road Quarry	200
animal biodiversity	110
anticline	. 52, 193
antiform	
asymmetrical mountains	67

B

back-arc basin 104, 105
badlands
basalt
base level 56, 94–95
batholiths 22
Beacon Hill 173, 186
Beaufort Channel 211
bedding planes 26, 71
beds
bioturbation 57, 143
black-eared kite 110
Bluff Head Formation 29, 69, 122
borrow areas (offshore) 214
boulder fields 39
breccia 27, 228
bricks
Brides Pool72
Burmese python 110
butterflies

С

calderas 8, 135–136, 154, 222
calderas and columnar joints 136
Cape D'Aguilar Marine Reserve 206
Captain Charles Elliot 189
Castle Peak Range38, 84, 90, 92, 94, 96
catchwaters 201
Chek Lap Kok Airport169–171

Che Kwu Shan Formation	. 222-	-223
chi		83
Chinese graves		. 128
Chinese white dolphin		
Chi Ma Wan Granite		
Chi Ma Wan Peninsula 151,		
	190	160
clans		
Clear Water Bay Formation		
cliffs (sea)		
Closed Frontier Area		
coal		
coastal environments	13/-	-145
coastal processes		1 (0
beach boulders		
beach deposits		
beach processes		
beach terminology		. 139
breakers	140-	-141
coral coasts	144-	-145
deltas	142-	-144
delta sediments		. 143
fluid density		.143
headland erosion		
joint slots		
longshore drift		
artificial shores		
mangroves and muddy flats		
pebble beach (Tong Fuk)		
planar cross beds		
ripples		
1 1		
rip currents		
sea arches		
sea caves		
sea stacks		
swash and backwash		
tidal flats		
tombolo76,		
wavelength		.141
wave refraction		.138
coastlines		42
College of Medicine		.197
colluvium		
compression		
conglomerate 27, 68, 71–72,		
contaminated mud		

coquinas 27, 143
corals 81, 144–45, 206, 209, 225
corestones 39, 178–179
cormorants 216
country parks 112
crested goshawk 110
Crooked Harbour 228
Crooked Island (See Kat O)
cuesta 18–19, 25

D

debris flows 158-159
Deep Bay 41, 49, 61
deforestation 60–61
detrital 27
diatoms 215
differential erosion 30-31, 50, 71, 89
dip angle 18
dip slopes 70–71, 227–228
Discovery Bay 151
dolphins 171–172, 209, 215, 218
dolphin habitat problems 172
Double Haven
dykes 22, 137, 152, 154–155, 217–218
221
dykes, feldsparphyric 155
, , <u>r</u> , ,

E

earthquake risks	
Earth movements	25, 35, 52
East Lamma Channel	33, 211, 214
erosion	89, 148, 200
escarpments	
eutaxite	193
eutrophication	215
extrusive igneous rocks	15

F

Fan Lau 16	4
Fan Lau Granite 15	6
faults	
Lantau 3	6
orientation 3	3
rock weakening19, 194, 22	5
thrust fault (Double Island) 22	9
thrust fault (Tiu Tang Lung) 7	0

Tolo Channel Fault Zone 107–108
fault types 35
Fei Ngo Shan 119, 173
Feng Shui 82–83
Feng Shui woodland 83
fissure eruptions 122, 135
floral diversity 5
folds
footpaths 148
foraminifera 215
formations
forts 164–165, 224
Fung Wong Shan149

G

0	
gei wei 41	, 55, 64
geological dating	6
geological history 74	-10, 29
Gin Drinker's Bay	101
glacials and interglacials	125
golf courses1	48, 226
Government Hill	
Governor's Beach	229
granite 22, 86-87, 107, 154, 1	56–157
175–176, 1	92, 218
granite weathering	92
granitic rock suites	87, 107
granodiorite 22	, 86–87
graphite schist	27, 216
Grassy Hill	
gullies	
-	

Η

Hakka 61–62, 111, 127, 145, 151
half-life 6
haze 199
High Island Formation 135, 222, 224
hill fires 80
historical change
City of Victoria 195–198
Hong Kong Island 204
Kowloon 174
northwest New Territories
Hoi Ha Wan Marine Park 144
Hoklo 62, 151
Hong Kong Island 189–206

Hong Kong minerals 100
Hong Kong and Shanghai Bank 196
human impacts (offshore) 96-97, 214
human occupation 61, 82, 109, 113
127, 145–146, 164, 204

Ι
Ice Age 125
ignimbrite 15
insects 134
intrusive igneous rocks 22
islands
Ap Chau 228–229
Basalt Island 224–226
Beaufort Island 220
Bluff Island 224–226
Brothers Islands 170, 216
Chek Chau 227
Chek Lap Kok 169–171, 216
Cheung Chau 218, 220
Dangan Islands 213
Double Island 229
East Brother Island 216
Hei Ling Chau 218, 220
Jin Island 226
Kat O 227–229
Kau Sai Chau 226–227
Kau Yi Chau 218
Lung Kwu Chau 215–216
Ninepin Islands 222–223
Peng Chau 218
Ping Chau 74, 81, 227–229
Po Toi 220, 222
See Chau 226
Sharp Island 224, 226–227
Sha Chau 215, 216
Shek Kwu Chau 218
Shelter Island 224, 226
Siu A Chau 217
Soko Islands 217–218
Sunshine Island 218, 220
Tai A Chau 217, 218
Tai Tau Chau 226–227
Tap Mun 227–229
Town Island 224–225
Tree Island 215–216

Tung Lung Island	223–224
Waglan Island	221–222
Wang Chau	224
West Brother Island	
Yim Tin Tsai	. 226–227
isostacy	125

J

James Hutton	5–6
joints	
columnar	37, 45, 136
	222–223, 225
erosion	
rock weakening	154, 225
sheeting	37, 221
structure and types	
tectonic	

K

Kadoorie Farm 106
Kai Sai Chau Volcanic Group122
Kam Tin 34, 63
Kam Tin Valley 55
kaolin
Kap Man Hang 17, 147
Kat O Formation 29, 228
Kowloon and Canton Railway188
Kiu Tsui Country Park 227
koel 110
Kop Tong 82
Kowloon Granite 122, 176
Kowloon Walled City 174–175
Kwun Yam

L

lahars 9, 106, 153
Lai Chi Chong Formation133
Lai Chi Wo 82
Lamma 191
Lam Tei Quarry 200
Lam Tsuen Valley 33, 54, 56
landfills 129
landscapes (coastal) 41-46
landscapes (granitic) 21-23
landscapes (joints & faults) 33-39
landscapes (sedimentary) 25-31

landscapes (volcanic) 13-19
landscape colours 28
carbon
copper 28
iron
manganese 28
landscape photographs
Aberdeen Reservoirs
Anderson Road Quarry 200
Ap Chau 24, 70, 228
Basalt Island 45, 226
Beaufort Island 221
Bluff Head 28, 69
Bluff Head Ridge 25, 67
Bluff Island 19, 45, 208, 225
boundary stones 195
Brides Pool 72
Buffalo Hill iii, 245
Byewash Reservoir
Castle Peak Range 23, 84, 90
92, 96
Castle Peak Range waterfalls 94
catchwater (Hong Kong Island) 201
Chek Chau 70, 227
Chek Keng
Chek Lap Kok reclamation170–171
Cheung Chau
Cheung Sha Beach 160
Cheung Uk 253
Chi Ma Wan Peninsula 157, 160
Closed Frontier Area
columnar jointing 135, 137
147, 223
14/, 223

Lantau Peak 149, 156, 167
Legislative Council (building) 197
Lin Ma Hang (bats) 78
Lin Ma Hang (mine) 78, 79
Lion Rock v, 47, 174, 176, 186
Long Harbour 142
Long Ke 140
Long Ke Tsai 19
Lower Shing Mun Reservoir 111
Lui Ta Shek (panorama) 132
Luk Keng 249
Lung Kwu Chau 216
Lung Kwu Tan 20, 23
Lung Tsai Ng Yuen Gardens 168
macaques 110, 188
Mai Po 32, 41, 49, 55, 62
64, 162
mangroves 32, 160
Ma On Shan 11–12, 14, 117
Ma On Shan Country Park119–120
Ma On Shan (landslips) 129
Ma Shi Chau
Ma Wan Chung 150
Mirror Pool
Murray House 196 Nei Lak Shan 172
Ngau Ngak Shan 123
Nga Ying Shan 149
Ngong Ping 167
North Lantau Expressway 169
North Ninepin Island 223
Pat Sin Leng 17, 80
Pearl River Estuary (islands) 208
Peng Chau 219–220
pill boxes 187, 205
Ping Chau 30, 74, 228
Ping Fung Shan 18, 70
Plover Cove Reservoir
Plover Cove Country Park 230
Pok Fu Lam Reservoir 201
Pok Fu Lam Valley 194
Po Pin Chau 137
Po Toi 221–222
Queen's Rd 198
Robin's Nest (panorama) 77
Sai Kung coastal erosion 139

Sai Kung East Country Park 135
Sai Kung (islands) 126, 148
Sai Wan 140, 148
Sharp Island 227
Sharp Peak 14, 131, 148
Sha Chau 171
Sha Lo Tung 68
Sha Tau Kok 75
Sha Tin 103, 109, 115
Shek Nga Shan 122
Shek O 44
Shing Mun Gorge 113
Shing Mun Redoubt (tunnels) 188
shotcrete
Shui Hau tidal flat 161–162
Shui Lo Cho 153
silver mine (Mui Wo) 167
Siu A Chau 217
slopes (mist nets)
slopes (stone pitching) 204
Soko Islands 207, 217
South Ninepin Island 223
squatter communities 113
Stone Trail 16, 236 stream erosion 200
Sunset Peak 156
Sunshine Island
Tai Hang Valley
Tai Lam Country Park 85, 96
Tai Lam Reservoir
Tai Long Wan 1, 40, 140
Tai Mo Shan 101, 103, 106
Tai O 151, 166
Tai Po 109
Tai Tam Tuk Reservoir 201
Tai To Yan 34, 53
Tap Mun 227
tea terraces 109
Tian Tan Buddha 168
Tin Hau temple 222
Tiu Tang Lung 70, 74
Tolo Channel 75
Town Island 225
Tung Chung 232
trawling 214

Tsim Chau	46
Tsing Ma Bridge	
Tuen Mun	
Tung Lung Island	
Turret Hill	
Two International Finance Centre	
University of Hong Kong	
Victoria Harbour 44, 173,	
Waglan Island	
Wang Leng	
Waterfall Bay	
weathered profiles 178-	
white-bellied sea eagles	220
Wong Chuk Shan	127
Wu Kau Tang	82
Yam O 166,	169
Yi O	150
landslides 158–159,	202
land animals	
land area	
land sales 195-	
Lantau	
Lantau (country parks)	
Lantau (dyke swarm)	
Lantau (dyke swarn)	
Lantau Peak	149
Lantau (vegetation)	
Lantau (vegetation)	
Lantau Voicance Group Lan Tau Pai	
Lau Fau Shan	
lead-210	
Lead Mine Pass	
Legislative Council (building)	
Lei Yue Mun Gap	
leopard cat	
levee	
Lianhuashan Fault Zone	
limestone	
Lin Fa Shan	
Lin Ma Hang 77	-79
Lion Rock	173
Lok Ma Chau Formation	29
Long Harbour	131
Long Harbour Formation	135
Luk Chau Shan	38
Μ	

macaques 110, 188, 206
magma 14–15, 22, 86, 105
175, 192, 220
magma chambers 8, 86, 107, 121, 218
Mai Po 49, 55, 62–64
mangroves 41, 49, 64, 142
Mang Kung Uk Formation 133
maps (geology)
central New Territories 104
eastern New Territories 133
Hong Kong 13, 21, 25
Hong Kong Island and Lamma 192
islands (off eastern Lantau) 218
islands (Mirs Bay) 227
islands (Po Toi group) 220
islands (Rocky Harbour
and Port Shelter) 224
islands (Soko) 217
islands (southeastern) 222
islands (western) 215
Kowloon and Lion Rock 175
Lantau 153
Ma On Shan (iron mine) 123
Needle Hill
northeastern New Territories 69
northwestern New Territories 50
southeastern New Territories 119
Shui Hau (tidal flat) 161
Victoria Peak
western New Territories
maps (miscellaneous)
calderas
Cape D'Aguilar Marine Reserve 206
Castle Peak Range
central New Territories 101
city of Victoria 195
coastal change (Mai Po) 55
coastal change (northwestern
New Territories)
coastal erosion
eastern New Territories 131
faults (Kowloon reservoirs) 184
fault valleys (Hong Kong Island) 194
Hong Kong Island 189
human impacts (sea floor) 214
islands (Hong Kong) 207
101111111111111111111111111111111111111

Japanese invasion 187
Kam Tin River 66
Kowloon and Lion Rock (hills) 173
Kowloon (pluton) 176
Kowloon (weathering front) 179
Lantau 149
Lantau (country parks) 152
late Quaternary 125
late Quaternary (shorelines) 212
late Quaternary (vegetation) 60
Ma On Shan (iron mine) 124
northeastern New Territories 67
Ng Tung River 66
north Lantau (marine problems) 172
northwestern New Territories 48
ocean currents 209
Ping Chau Marine Park 81
Pleistocene (rivers) 170, 212
reclamations (Victoria Harbour) 182
reclamations (western New
Territories)
Scheduled Areas 118
sea floor bathymmetry 211
sea Levels (Sai Kung) 126
Sha Tin Valley (development) 116
Shing Mun Redoubt 186
southeastern New Territories 119
tidal pathways 211
Tolo Channel (fault) 108
Tuen Mun (weathering front) 90
weather 132
western New Territories
Yan Chau Tong Marine Park 81
marble 7, 27, 50, 116, 123
mariculture 227, 229
marine parks 81
marine salinity gradients 208–209
mass movements 158–159
Ma On Shan 119, 123
Ma On Shan Formation 29
Ma On Shan (iron mine) 123, 124
metamorphic rocks 50–52
migrating volcanoes 105
minerals
biotite 22, 100
calcite 100

feldspar 22, 86, 100, 154
fluorite 114
galena 78, 100, 114, 166
graphite 166–167, 216
haematite 22
hornblende 100
limonite 28
magnetite 123
molybdenite 100, 114
pyrite 114
quartz 22, 78, 86, 100, 154
silver 166
sphalerite 100
wolframite 99–100, 114, 167
mining
kaolin 167
Lin Fa Shan (tungsten, adits) 99
Lin Ma Hang (lead) 78–79
Ma On Shan (iron) 124
Needle Hill (tungsten) 114
Silver Mine Bay (silver) 166
West Brother Island (graphite) 216
mining (landscape scars) 114
Mirs Bay 227
mist nets 204
monzonite 22
mountain streams
Mt. Butler Granite 122, 176, 192
Mt. Butler Quarry 200
Mt. Stenhouse 191
mudstone 27, 71
mud flats 41
Mui Wo 151
Murray House 196

Ν

8
101, 114
07, 114, 121
154, 175
156, 172
115
119, 123
228
102
15

nullahs		66
---------	--	----

0

ocean currents	209
ocean waves	. 19
offshore buried landscapes	212
oldest lighthouse	222
oysters	. 49

Р

Pat Sin Leng 17, 67
Pat Sin Leng Formation 28–29, 69–70
paved trackways 127
Peak Tram 197
pearls 229
Pearl River 208
photographs (aerial)
Kowloon and Sha Tin 3
Lin Fa Shan 99
photographs (historical)
Kowloon Walled City 174–175, 180
Sheung Shui (floodplains) 65
Tide Cove (Sha Tin) 117

photographs (marine)
anemones 226
corals (Hoi Ha Wan) 144
corals (Ping Chau) 81, 209
corals (Soko Islands) 218
diatoms 215
foraminifera 215
mudskippers 160
ray (Soko Islands) 218
starfish (Soko Islands) 218
photographs (miscellaneous)
abandoned villages 68
bedding planes 26, 71
Kam Tin (nullah) 66
Kam Tin River (point bar) 66
mangrove leaves 64
potholes 71
photographs (rocks and sediments)
basalt 22
basaltic andesite 154
beach sands 163
biotite granite 176
coal 27

conglomerate 18, 72
gneiss 51
granite 22, 87
granite (Po Toi) 221
granodiorite 22
graphite schist 27, 216
ignimbrite 15
limestone 27
marble
monzonite 22
pebbles (Tong Fuk coast) 163
pebbles (and Tai O Formation) 152
phyllite
porphyry
pumice tuffs 106
rhyodacite
rhyolite 22, 121, 135, 155
rhyolite (feldsparphyric)
rhyolitic hyaloclastite
sand 27
sandstone (Bluff Head) 28
sandstone (Chek Chau) 30
sandstone (Ping Fung Shan) 26
sandy ripples 163
schist
shale 51, 72
shale (Sai Kung Country Park) 28
siltstone (Ma Shi Chau) 30
siltstone (Ping Chau) 30
siltstone (Shek Uk Shan) 26
siltstone and quartz 31
tuff 15, 18, 135
pill boxes 187
Ping Chau Formation 29, 228
Ping Fung Shan 18, 26, 30
Ping Shan 63
pirates and forts 165
plantation trees
plate boundary 14, 105
plate tectonics
Pleistocene rivers 212
Plover Cove 67
plunge pool 72, 94
plutons 22, 176
pollution 199, 234
population movements 61-62

population pressures	113
Port Island Formation 28–29,	227
Port Shelter	224
potholes	71
Po Lin (monastery)	168
Po Shan Road (landslide)	202
Po Toi Granite	220
public housing	113
Punti 62,	

Q

quarries	147,	199–200
quartz veins		88–89

R

radioactive elements 6
reclamations
Central 197
Chek Lap Kok 169–171
coastal 214
Kowloon 180, 182
northwest New Territories 63–64
Sha Tin 115–116
red tides 215
reefs
religion and Lantau 167–168
Repulse Bay Volcanic Group 122
reservoirs
Aberdeen Reservoir 201
Byewash Reservoir 185
High Island Reservoir 146
Hong Kong 111
Kowloon 184
Kowloon Reservoir 184
Plover Cove Reservoir 80
Pok Fu Lam Reservoir 201
Reception Reservoir 185
Shek Lei Pui Reservoir 185
Shek Pik Reservoir 152, 156
Shing Mun Reservoir 111
Tai Lam Chung Reservoir
Tai Tam Reservoir
Wong Nei Chung Reservoir 201
rhyodacite
rhyolite 14–15, 22, 122, 154–155, 221
ria 131

rills
rivers
alluvium 57
base level 56, 59
floodplains 54, 56, 64–66
levee
maturity 54
nullahs
oxbow lake 56
point bar 56–57, 66
rejuvenation
river processes 54–59
terraces
Robin's Nest
rock carvings (Nam Tam Wan) 222
rock platforms

S

Sai Lau Kong Formation 106
salt pans (Lantau) 166
sandstone 27, 68, 71, 122, 227, 229
sand dunes 9
Scheduled Areas 118
sea caves 45, 139
sea level change 10, 125-126, 212-213
sedimentary formations 28-29
sedimentary rock colours 28
seismic profiles 213
Sha Chau and
Lung KwuChau Marine Park 171, 215
Sham Chun River 41
Sham Wan 206
Sha Lo Wan 167
Sha Tau Kok 18, 33, 63, 75
Sha Tin 101, 115–117
Sha Tin Granite107-108, 121, 154, 175
Sha Tin Valley 33, 108
sheeting joints (See joints, sheeting)
Shek Kip Mei (squatter village) 113
Shek Kong 34
Shek O Quarry 200
Shek Uk Shan 26
Shing Mun Formation 106, 133, 153
Shing Mun Redoubt 186, 188
Shing Mun Valley 101
shotcrete

Shui Chuen O Granite 107, 121, 175
Shui Hau 161
Shui Ngau Shan 119
silica 22
sills 22
siltstone 27, 68, 227
Sir Murray MacLehose 112-113
skarn 123
slopes (stability and maintenance) 202
slumps 129, 158–159
soil pipes
Sok Kwu Wan Quarry 199–200
sombrero islands
South Lamma Granite 192
spheroidal weathering 39
spring sapping
stacks 45, 138
Starling Inlet 74–75
stone pitching 204
Strike-slip fault (See faults, types)
subduction 14, 88, 105
subtidal platforms 74
Sunset Peak 149
superposition
supratidal platforms 76
syncline
synform 52

T

Tai Chau 46
Tai Lam Country Park 96
Tai Lam Granite 87
Tai Long Tsui 138
Tai Long Wan 47, 140
Tai Mo Shan 101
Tai Mo Shan Formation 106, 228
Tai O 151
Tai O Formation 152
Tai Po Granodiorite 107, 192
Tai Po Kau 116
Tai Po Pass 108
Tanka 62
Tate's Cairn 173
tea terraces 109
tension (crustal) 35
terrace walls 127

U

unconformity	152
uncontaminated mud dumping	215
uniformitarianism	5–6
University of Hong Kong	197
urbanisation and streams	200
urban canyons	198
urban climates	198
urban development	182
urban geological mapping	181
urban geology	183
urban pollution 198-	-199
Urmston Rd.	

V

valley deltas and progradation	126
Victoria Peak	189
Vietnamese refugees	217
volcanic arc	105
volcanic ash	14
volcanic bomb	. 15

volcanic groups	87
volcanic rocks	13
volcanoes	86

W

Wang Leng 67
waterfalls 16, 37, 71-73, 94-95, 102
147, 153, 202–203
weather 132
weathered granite 23, 92
weathering 154, 176, 179
weathering front 177–179
weepholes 202
wetlands 41, 49, 55
white-bellied sea eagle 110
wildlife 77, 109–110, 116
133, 160, 188, 205–206
wildlife (marine) 218, 226
wild boar 110
Wong Leng 67
World War II 186–187
Wu Kau Tang 82

Y

Yan Chau Tong 81
Yim Tin Tsai Formation 104, 193
Yuen Long
Yuen Long Formation 29
Yuen Long Plain 54, 55
Yuen Tsuen (ancient trail)