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1.1 Formulation of a Linear Programming Problem
Linear programming is a powerful mathematical tool for the optimization of an
objective under a number of constraints in any given situation, Its application

can be in maximizing profits or minimizing costs while making the best use of
the limited resources available. Because it is a mathematical tool, it is best
explained using a practical example.

Example 1.1

A pipe manufacturing company produces two types of pipes, type 1 and type 1L
The storage space, raw material requirement and production rate are given as
below:

Storage space 5 m’/pipe 3 m'/pipe 750 m*
Raw materials 6 kg/pipe 4 kgfpipe 800 kg/day
Production rate 30 pipesfhour 20 pipesfhour 8 hours/day

The profit for selling one type 1 pipe is 510 and that for type 11is 58. The pipes
produced each day are taken by trucks to sales outlets in the early moming of
the next day before a new day’s manufacturing work starts.  Our objective is 1o
formulate for the company a linear programming model which can determine
how many pipes of each type should be manufactured each day so that the total
profit can be maximized.

Solution 1.1

Let Z = total profit
X = number of type | pipes produced each day
Xz = number of type II pipes produced each day

Since our objective is o maximize profit, we write an objective function,
equation (0), which will calculate the total profit:
Maximize Z = 10x; + 8x (0)
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x; and x; in equation (0) are called decision variables.
There are three constraints which govern the number of type I and type II pipes
produced. These constraints are: (1) the availability of storage space, (2) the raw
materials available, and (3) the working hours of labourers. Constraints (1), (2)
and (3) are written as below:
Storage space : S5x; +3x; < 750 O
Raw material : 6x; +4x, £ 800 2)
Working hours :i + i <8 3)
30 20
When constraint (3) is multiplied by 60, the unit of hours will be changed to the
unit of minutes (ie. 8 hours to 480 minutes). Constraint (3) can be written as :
2x1 + 3x, < 480 3)
Lastly, there are two more constraints which are not numbered. They are x; >0
and x» 2 0, simply because the quantities x; and x, cannot be negative.
We can now summarize the problem as a linear programming model as
follows:
Maximize Z = 10x, + 8x; ()
subject to
5x1+3x2 < 750 )
6x; +4x2 < 800 2
2x; +3x, < 480 3)
X120
X220
1.2 Solving a Linear Programming Problem

There are two methods in solving linear programming models, namely, the
graphical method and the simplex method. The graphical method can only
solve linear programming problems with two decision variables, while the
simplex method can solve problems with any number of decision variables.

Since this book will only concentrate on the applications of linear programming,
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the mathematical details for solving the models will not be thoroughly treated.
In this section, the graphical method and the simplex method will only be briefly
described.

1.2.1 Graphical Method

Let us look at the linear programming mode] for Example 1.1:

Max Z=10x; +8x; ©
subject to
5x; +3x2 £ 750 H
6x; +4x; < 800 (2)
2x;1 +3x2 < 480 3
X120
X220

The area bounded by (1) : 5x; + 3x; =750, (2) : 6x; +4x, = 800, (3) : 2x; + 3x,
= 480, (4) : x;=0 and (5) : x,=0 is called the feasible space, which is the
shaded area shown in Fig. 1.1. Any point that lies within this feasible space will

satisfy all the constraints and is called a feasible solution.

Note: the x, and x; axes
are not drawn on
the same scale.

A
128

X
\ 1
Fig. 1.1 Graphical Method
The optimal solution is a feasible solution which, on top of satisfying all
constraints, also optimizes the objective function, that is, maximizes profit in

this case. By using the slope of the objective function, -(10/8) in our case, a line

can be drawn with such a slope which touches a point within the feasible space
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and is as far away as possible from the point of origin 0. This point is
represented by A in Fig. 1.1 and is the optimal solution. From the graph, it can
be seen that at optimum,
x; = 48 {type I pipes)
x; = 128  (type II pipes)
max Z = 1504 (profit in $), calculated from 10(48) + 8(128)

From Fig. 1.1, one can also see whether or not the resources (i.e. storage space,

raw materials, working time} are fully utilized.

Consider the storage space constraint (1). The optimal point A does not lie on
line (1) and therefore does oot satisfy the equation 5x, + 3x, = 750. If we
substitute x; = 48 and x, = 128 into this equation, we obtain;

5(48) +3(128) = 624 < 750
Therefore, at optimum, only 624 m? of storage space are used and 126 m” (i.e.

750 - 624) are not used.

By similar reasoning, we can see that the other two resources {raw materials and

working time) are fully utilized.

If constraint (1) of the above problem is changed to 5x; + 3x; £ 624, that is, the
available storage space is 624 m’ instead of 750 m?, then line (1) will also touch
the feasible space at point A. In this case, lines (1), (2) and (3) are concurrent at
point A and all the three resources are fully utilized when the maximum profit is
attained. There is a technical term called “optimal degenerate solution” used for

such a situation.

1.2.2 Simplex Method
When there are three or more decision variables in a linear programming model,
the graphical method is no more suitable for solving the model. Instead of the

graphical method, the simplex method will be used.
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As mentioned earlier, the main theme of this book is applications of linear
programming, not mathematical theory behind linear programming. Therefore,
no detail description of the mathematics of linear programming will be
presented here. There are many well developed computer programs available in
the market for solving linear programming models using the simplex method.
One of them is QSB" (Quantitative Systems for Business Plus) written by Y.L.
Chang and R.S. Sullivan and can be obtained in any large bookshop world-wide.
The author will use the QSB* software to solve all the problems contained in the

later chapters of this book.

Examples of the techniques employed in the simplex method will be illustrated
in Appendix A at the end of this book. Some salient points of the method are

summarized below.

First of all we introduce slack variables S;, S; and S; (S4, Sz, S3 2 0) for Example

1.1 to change the constraints from inequalities to equalities such that the model

becomes:
Z-10x; -8x, =0 (0a)
subject to
5x1 +3x2 +S; = 750 (1a)
6x1 +4x, +S; = 800 (2a)
2x; +3x2 + 53 = 480 (3a)

The initial tableau of the simplex method is shown in Table 1.1. It is in fact a

rewrite of equations (0a), (1a), (2a) and (3a) in a tableau format.

Basic Variable Z X1 X2 Sl Sz S3 RHS
0y Z 1 -10 -8 0 0 0 0
(la) S 0 5 3 1 0 0 750
(2a) S» 0 6 4 0 1 0 800
(Ba) S 0 2 3 0 0 1 480

Table 1.1 Initial Simplex Tableau for Example 1.1
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After two iterations (see Appendix A), the final tableau will be obtained and is
shown in Table 1.2 below.

Basic Variable Z X1 X2 S Sa S3 RHS
Oy Z 1 0 0 0 14 0.8 1504
(lIe) S, 0 0 0 1 -0.9 0.2 126
2c) X 0 1 0 0 03 0.4 48
(Bc) xp 0 0 1 0 -0.2 0.6 128

Table 1.2 Final Simplex Tableau for Example 1.1

To obtain a solution from a simplex tableau, the basic variables are equal to the
values in the RHS column. The non-basic variables (i.e. the decision variables
or slack variables which are not in the basic variable column) are assigned the

value zero. Therefore, from the final tableau, we can see that the optimal

solution is:

Z = 1504
X; = 48
Xy = 128
S; =126
S; =0

S. =0 } non-basic variables are equal to 0.
5 =

It can be seen that this resuit is the same as that found by the graphical method.
S here is 126, which means that the slack variable for storage space is 126 and
therefore 126 m” of storage space is not utilized. S;and S, are slack variables
for the other two resources and are equal to 0. This means that the raw materials

and the working time are fully utilized.

1.2.3 Revised Simplex Method

The revised simplex method is also called the modified simplex method. In
this method, the objective function is usually written in the last row instead of
the first. Examples of the technique are illustrated in Appendix B. QSB* uses
the revised simplex method in solving linear programming models. The initial

tableau for Example 1.1 is shown in Table 1.3.
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Basic X X2 S1 S, S3
Variable G 10 8 0 0 0 RHS
St 0 5 3 1 0 0 750
S, 0 6 4 0 1 0 800
S3 0 2 3 0 0 1 480
Z o o 0 0 0 0
-7 0 8 0 0 0

Table 1.3 Initial Simplex Tableau for Example 1.1 (Revised Simplex Method)

After two iterations (see Appendix B), the final tableau will be obtained. It is

shown in Table 1.4.

Basic X X2 St Sa S3
Variable G 10 8 0 0 0 RHS
Si 0 0 0 1 0.9 0.2 126
X1 10 1 0 0 0.3 -04 48
X2 8 0 1 0 -0.2 0.6 128
Z 10 8 0 14 08 | 1504
G- 0 0 0 14 08

Table 1.4 Final Simplex Tableau for Example 1.1 (Revised Simplex Method)




2.1

2.2

Shadow Price / Opportunity Cost
The shadow price (or called opportunity cost) of a resource is defined as the

economic value (increase in profit) of an extra unit of resource at the optimal
point. For example, the raw material available in Example 1.1 of Chapter 1 is
B0O kg; the shadow price of it means the increase in profit (or the increase in 7,
the objective function) if the raw material 15 increased by one unit, to 801 kg.
Now, let  y; = shadow price of storage space($/m”)

ya = shadow price of raw material ($/kg)

vy = shadow price of working time ($/minute)
This means that one additional m* of storage space available (i.e. 751 m® is
available instead of 750 m®) will increase Z by y, dollars; one additional kg of
raw materials available will increase Z by s dollars; and one additional minute

of working time available will increase Z by yi dollars.

Based on the definition of shadow price, we can formulate another linear
programming model for Example 1.1, This new model is called the dual model.

The Dual Model
Since the production of a type 1 pipe requires 5 m® of storage space, 6 kg of raw
material and 2 minutes of working time, the shadow price of producing one extra
type I pipe will be Sy, + 6 y2 + 2y,. This means that the increase in profit (i.e. Z)
due to producing an additional type I pipe is 5y + 6 va + 2y, which should be
greater than or at least equal to $10, the profit level of selling one type I pipe, in
order to justify the extra production. Hence, we can write the constraint that:

Sy +0ya+2yy = 10 (1
A similar argument applies to type II pipe. and we can write another constraint
that:

3y +dy+3y; 2 8 S (2)
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It is impossible to have a decrease in profit due to an extra input of any
resources. Therefore the shadow prices cannot have negative values. So, we

can also write:

We can also interpret the shadow price as the amount of money that the pipe
company can afford to pay for one additional unit of resource so that he can just
break even on the use of that resource. In other words, the company can afford,
to pay, say, y» for one extra kg of raw material. If it pays less than y, from the

market to buy the raw material it will make a profit, and vice versa.

The objective this time is to minimize cost. The total price, P, of the total
resources employed in producing pipes is equal to 750y; + 800y, + 480y;. In
order to minimize P, the objective function is written as:

Minimize P = 750y; + 800y, + 480y; (V)

We can now summarize the dual model as follows:

Min P = 750y, + 800y, + 480y; 0)
subject to
Sy1 +6y2+2y; 2 10 §))]
3y1+4y:+3y; 2 8 #))
Y1 20
y2 20
y3 20

The solution of this dual model (see Appendix A or Appendix B) is:
min P = 1504

yi=0
y2 = 1.4
y3= 0.8

We can observe that the optimal value of P is equal to the optimal value of Z
found in Chapter 1. The shadow price of storage space, yi, is equal to 0. This

means that one additional m? of storage space will result in no increase in profit.



Primal and Dual Models 11

23

This is reasonable because there has already been unutilized storage space, The
shadow price of raw material, ys, is equal to 1.4, This means that one additional
kg of raw material will increase the profit level by $1.4. The shadow price of
working time, ys, is equal to 0.8, This means that one additional minute of
working time will increase the profit level by $0.8. It can also be interpreted
that $0.8/minute is the amount which the company can afford to pay for the
exira working time, If the company pays less than $0.8/minute for the workers

it will make a profit, and vice versa.

Comparing Primal and Dual
The linear programming model given in Chapter 1 is referred to as a primal
model. Its dual form has been discussed in Section 2.2. These two models are

reproduced below for easy referenee,

Primal Dual

Max Z=10x; +8x, Min P = 750y, + 800y; + 480y,
subject to subject to
5%, +3x; € 750 S5yi+6y:+2y; 2 10
6x1+4x; £ 8300 3y;+4y:+3y; 2 8
2x1 + 3x, < 480 yi 20

X; 20 y2 20

X2 20 yi 20

It can be observed that :
{a) the coefficients of the objective function in the primal model are equal to the

RHS constants of the constraints in the dual model,

(b) the RHS constants of the constraints of the primal model are the coefficient

of the objective function of the dual model, and

{c) the coefficients of yi, y2 and yi, when read row by row, for the two
constraints of the dual model are equal to those of x; and x;, when read
column by column, in the primal model. In other words, the dual is the
transpose of the primal if the coefficients of the constraints are imagined as a

matrix.
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The general form of a primal model is :

Max Z =c¢c\X; + X, +..... + CX,
subject to
4%t apX, f....t a,X, < b
ByX; T 8pXy + .t ByX, S b,

AnX) + BXy * ot X, < by

all x; 20

The general form of the dual model will be :
Min P =b)y, + by, +..... + by

subject to

[\

Apy; v Y, ot Ay Yn <

ALY T ARy, et A¥m 2 G

aln}’l * a’ZnyZ Tt aanm 4 C.n
all ;20
The two models are related by :

(a) maximum Z = minimum P, and

AZ
b = =
(b) ¥i Ab,

where y; stand for the shadow price of the resource i and b; is the amount of the

i¥ resource available.

It should be pointed out that it is not necessary to solve the dual model in order

to find y,. In fact, y, can be seen from the final simplex tableau of the primal

model. Let us examine the final tableau of Example 1.1 :
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Y1 Y2 y3
Basic Variable Z X1 X2 S, S, Ss3 RHS
VA 1 0 0 0 4] 08l 1504
Sy 0 0 0 1 -0.9 -0.2 126
X1 0 1 0 0 0.3 -04 48
X2 0 0 1 0 -0.2 0.6 128

We can see that the coefficient of Sy, slack variable for storage space, in the first
row (the row of the objective function Z) is equal to y;, the shadow price of
storage space in $/m%. The coefficient of S,, slack variable for raw material, in
the first row is equal to ys, the shadow price of raw material in $/kg. Again, the
coefficient of S, slack variable for working time, in the first row is equal to ys,

the shadow price of working time in $/minute.

Therefore, it is not necessary to solve the dual model to find the values of the
decision variables (ie. yi1, y2 and y3). They can be found from the primal model.
The same occurs in the revised simplex method. The final tableau of the revised

method for Example 1.1 is :

Basic X1 X2 S] Sz S3

Variable G 10 8 0 0] 0 RHS
Si 0 0 0 1 0.9 0.2 126

X) 10 1 0 0 0.3 -0.4 48

X 8 0 1 0 -0.2 0.6 128
Z 10 8 1.4 8] | 1504

G- Z; 0 0 0 -14\ 08
N y2 y3

In a similar way, the values of yj, y; and y3 can be seen from the row of Z;.

Algebraic Way to Find Shadow Prices

There is a simple algebraic way to find the shadow price without employing the
simplex method. Let us use the same example, Example 1.1, again to illustrate
how this can be done. The linear programming model is reproduced hereunder
for easy reference:

Max Z=10x; + 8x, 0
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subiect 0

5x, + 3x, < 750 e e e e (1)
6x, + 4x, <€ 800 e (2
2x, +3x, £ 480 e i e (D)

As can te seen from the graphical method, storage space has no effect on the
optimal solution (see Section 1.2.1). Line (1) : 5%, = 3x, = 750 therefore does
not pass through the optimal point. Since raw material and working time both
define the optimal point, the solution is therefore the intersection point of line

(2) : 6x, + 4x, = 800 and line (3) : 2x, + 3x, = 480.

Assuming that the raw material available is increased by AL kg, the optimal
solution will then be obtained by solving:
6x, + 4x, = 800 + AL
and 2x, +3x, = 480

Solving, we obtain :

3
X, = 48 + T=AL

and  x, =128 - -51—-AL

Substituting x, and x, into the objective function, we have:

7 + AZ = 10(48 + %AL) + 8128 - -E—AL)

Simplifying, we get
7
Z + AZ = 10(48) + 8(128) ~ 5 AL
Since Z = 10{48) + 8(128)

. AL = l_AL

(%]

e B2 — 14 (i.e. shadow price of raw material in $/kg)
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Similarly, if we assume that the working time available is increased by AM

minutes, we can, by the same method, obtain that :

AZ _ 48  (ie. shadow price of working time in $/minute)

AM

2.5 A Worked Example
Let us now see a practical example of the application of shadow prices.
Example 2.1
A company which manufactures table lamps has developed three models
denoted the “Standard”, “Special” and “Deluxe”. The financial returns from the
three models are $30, $40 and $50 respectively per unit produced and sold. The
resource requirements per unit manufactured and the total capacity of resources

available are given below :

Machining Assembly Painting
(hours) (hours) (hours)
Standard 3 2 1
Special 4 2 2
Deluxe 4 3 3
Available Capacity 20,000 10,000 6,000

(a) Find the number of units of each type of lamp that should be produced such
that the total financial return is maximized. (Assume all units produced are
also sold.)

(b) At the optimal product mix, which resource is under-utilized?

(c) If the painting-hours resource can be increased to 6,500, what will be the

effect on the total financial return?

Solution 2.1

(a) The problem can be represented by the following linear programming
model :

Max Z =30x; +40x; + 50x3
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subject to

3x, +4x, +4x, < 20,000

ay

2x, +2x, + 3x,

A

< 10,000
x, +2x, +3x, £ 6,000
X, X5 X3 2 0
where x, = number of Standard lamps produced
X, = number of Special lamps produced

x; = number of Deluxe lamps produced
Introduce slack variables S,, S, and S, such that:
3x, +4x, +4x,+ 8, = 20,000
2%, +2x, +3x;+8S, = 10,000
X, +2x, +3x,+5; = 6,000

Using the simplex method to solve the model, the final tableau is:

shadow price of painting hour

Basic Variable 4 X X, Xy S, S, S, RHS
V4 1 0 0 10 0 10 L[ 10] 160,000
S, 0 0 0 -2 1 -1 -1 4,000
X, 0 1 0 0 0 1 -1 4,000
X, 0 0 1 1.5 0 -0.5 1 1,000
The final tableau of the revised simplex method is :
Basic X, X, X, S, S, S,
Variable G 30 40 50 0 0 0 RHS
S, 0 0 0 -2 1 -1 -1 4,000
X, 30 1 0 0 0 1 -1 4,000
X, 40 0 1 1.5 0 -0.5 1 1,000
Z; 30 40 60 0 10 10 160,000
G- Z; 0 0 -10 0 -10 -10

shadow price of
painting hour

From the final tableau of either method, we obtain the following optimal solution:
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Basic variabl Non-basi iabl
S1 = 4,000 x3=0

X1 = 4,000 S, =0

X2 = 1,000 S;=0

Z = 160,000

Therefore, the company should manufacture 4,000 Standard lamps, 1,000
Special lamps and no Deluxe lamps. The maximum financial return is
$160,000.

(b) Machining is under-utilized. Since S; = 4,000, therefore 4,000 machining

©

hours are not used.

The shadow price of painting-hours resource can be read from either
tableau and is equal to $10/hour. This means that the financial return will
increase by $10 if the painting-hour resource is increased by 1 hour. If the
painting hour is increased by 500 (from 6,000 hours to 6,500 hours), then
the total increase in financial return is $10 x 500 = $5,000, and the overall

financial return will be $160,000 + $5,000 = $165,000.

It should be noted that the shadow price $10/per hour may not be valid for
infinite increase of painting hours. In this particular problem, it is valid until
the painting hour is increased to 10,000. This involves post optimality
analysis which is outside the scope of this book. The software QSB,
however, shows the user the range of validity for each and every resource in

its sensitivity analysis function.

It is also worthwhile to note that while the Z; values of the final revised
simplex tableau represent shadow prices of the corresponding resources, the
C; - Z; values represent the reduced costs. The reduced cost of a non-basic
decision variable is the reduction in profit of the objective function due to
one unit increase of that non-basic decision variable. In Example 2.1, the
non-basic decision variable is X3, and so X; is equal to O when the total profit

is maximized to $160,000. If we want to produce one Deluxe lamp in the
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product mix (i.e. X3 = 1} under the original available resources, then the total
profit will be reduced to $159,990 (i.c. 160,000 - 10) because the reduced

cost of x3 is -10 (the C; - Z; value under column x3).

Exercise

1.

A precast concrete subcontractor makes three types of panels. In the production

the quantities of cement, coarse aggregates and fines aggregates required are as

follows:
Cement Course aggregates Fines aggregates
(m3/panel) (m3/pa.nel) (m3/panel)
Papel 1 1 3 2
Papel 1T [ 2 3
Pane! [ 2 3 4

The subcontractor has the following quantities of cement, coarse aggregates and
fines aggregates per week :

Cement 2 300 m*

Coarse aggregates : 500 m’

Fines aggregates  : 620 m’

The financial return for panei types I, IT and I are 20, 18 and 25 respectively.
Find the number of panels of each type that should be made so that the total
financial return is maximized. Which resource is under-utilized and why? If the
subcontractor can obtain some extra coarse aggregates, what is the maximum

cost per m” the subcontractor can afford to pay for it?
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