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CHAPTER 1
PREAMBLE

This book is a revised and re-written version of part of a study, spon-
sored (from 1992 onward) by Cypress International Investment Advisors
Ltd. Its purpose is to describe a new approach to the valuation of op-
tions on foreign exchange. Though the core of the original text remains,
comments, especially from professional practitioners, have led the authors
to re-orientate the exposition. In particular, the present edition has been

recast with applications very much in mind.

The reason underlying this change in exposition would be clear if one
remembers a bit of methodology. According to Friedman’s well known view
(1953), in positive economics assumptions do not matter. When one’s pur-
pose is to test a theory, what is important is that its predictions are not
empirically falsified. However, in applied economics the situation is differ-
ent, for in this case assumptions matter very much indeed. When one is
applying a theory to study economic growth in Hong Kong and produce
policy recommendations, it would not do if it assumes a closed economy or
an infinitely elastic supply of land.

The same may be said about option pricing, which is essentially an ap-
plication of capital theory. In this case, as Cox & Ross (1976) have shown,
what one assumes about the stochastic specifications governing the price of
the underlying asset is of fundamental importance. The use of stochastic
processes! to model the price of assets was pioneered by Bachelier (1900).
The idea was that in a continuous competitive market, the asset price would
be subject to so many independent influences that we can imagine it to fluc-
tuate randomly along a continuous path. As a result, Bachelier assumed the
price of the representative asset to follow (what is now called) a Brownian
motion.

Brownian motion, however, allows asset prices to go negative. Since
this would violate the condition of limited liability, the assumption cannot

be used when applying the analysis to an equity. (It would also be difficult to

1Technical terms are explained in Chapter 3 below.
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Pricing Foreign Ezchange Options

apply to any good which has a positive price and therefore a market). This
result led Samuelson (1965) to introduce the idea of geometric Brownian
motion, in which the asset price is restricted to take positive values with non-
zero probabilities. Since that time, geometric Brownian motion has become
a paradigm for financial research. In the particular subject of options, the
seminal work of Black & Scholes (1973) is based on the assumption that the

representative stock price follows geometric Brownian motion.

Recent research (to which the authors contributed?) has uncovered a
number of problems, which suggests that the scope of application of geo-
metric Brownian motion is not as wide as first envisaged. Institutionally,
it is clear that the assumption cannot be applied to the bond market, and
to value fixed income options and the options embedded in callable bonds.
Since geometric Brownian motion allows asset prices to go infinite with
non-zero probability but every bond has a finite maximum price, as long
as interest rates are non-negative it would be inappropriate to model the
representative bond price in such terms (Dyer & Jacob 1996). In addition,
there are serious problems in theory. For example, if an asset price follows
geometric Brownian motion, it is possible for its sample path to drop to
0 with probability 1, and yet all the time the expected price of the asset
would be increasing without limit. An individual who holds such an asset
according to standard portfolio (mean-variance) critieria would be “almost
certainly ruined”, with a zero price the market would disappear, and options

on the asset would yield distorted values.

In this book we propose an alternative assumption to geometric Brown-
ian motion, and show how it can be applied to perhaps the largest financial
market in the world, that for foreign exchange. This new stochastic speci-
fication is free from the theoretical problems noted above. “Almost certain
ruin” and the disappearance of markets are excluded for a representative
foreign currency. In addition, the non-random effects of standard economic
theory (in particular changes in purchasing power parity) can be incorpo-
rated, both in the description of the stochastic process for the spot price of
the currency and in a new formula for pricing foreign exchange options.

2See Cheung & Yeung (1994a) and (1994b).
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Preamble

Chapter 2 introduces definitions and terminology. To save on time
spent looking up textbooks, a technical glossary is supplied in Chapter 3.
Chapter 4 attempts to impress upon the reader the importance of assump-
tions in option theory, by presenting an example in which an option price
is obtained without making stochastic assumptions at all, and inviting the
reader to compare it with the classic Black-Scholes formula. Black and
Scholes contribution (1973), which is fundamental to all modern work in
options, is discussed in Chapters 5 and 6. Since (as noted above) the un-
derlying asset price is assumed to follow geometric Brownian motion, two
serious problems are seen to arise. First, the technique commonly used to
solve Black-Scholes differential equations does not exclude “almost certain
ruin”, so that it is difficult to maintain the required general equilibrium
interpretation of the resulting option prices. Secondly, under geometric
Brownian motion the asset price displays the characteristics of a random
walk, in the sense that its value at any future point of time depends solely
on what it is at present. This property is beginning to be called into ques-
tion by recent research. (See e.g. McQueen & Thorley 1991, Samuelson
1991, Kaehler & Kugler eds. 1994, Haugen 1995, Malkiel 1996, Campbell,
Lo & Mackinlay 1997). For example, it is suggested that returns to U.S.
common stocks in the post-war period show statistically significant non-
random walk behavior, especially that runs of high and low returns have

been found to follow one another.

To meet the problems which arise from assuming geometric Brown-
ian motion, we propose (in Chapter 7) an alternative stochastic process to
model the dynamic behavior of asset prices. The solution of the resulting
stochastic differential equation is characterised completely, in the form of a
closed form expression for the asset price’s transition density function. It is
shown that “almost certain ruin” is excluded, and non-random walk effects
from standard economic theory — for example, the changes in the repre-
sentative firm’s equilibrium balance sheet which underlie the Modigliani-
Miller Theorem — can be taken into account. An option pricing formula
is also obtained, by taking mathematical expectation in terms of the asset
price transition density. Chapter 8 shows how the stochastic specification of
Chapter 7 can be applied to model the spot price of a representative foreign
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currency, and to price options on it. In contrast to the random walk restric-
tion imposed by geometric Brownian motion, we are able to incorporate
a fundamental theorem of international finance, that in the long run the
exchange rate converges to purchasing power parity. “Almost certain ruin”,
the disappearance of markets and their consequences are excluded, and fi-
nally a computable closed-form formula to price foreign exchange options is

obtained.
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CHAPTER 3
TECHNICAL GLOSSARY

3.1 Imtroduction!

The technical terms and results which will be used in the exposition are
summarised in this Chapter. For details and proofs, the reader is referred
to any good text on stochastic processes, e.g., Karlin & Taylor (1975, 1981).

3.2 Stochastic Processes

Let (R, A, P) be a probability space, and T an arbitrary set of numbers.
Suppose we define the function:

X(tw), teT, wel (3.1)

A stochastic process is a family {X (¢,w)} of such functions. For any given
t €T, X(t,-) denotes a random variable (or a random vector) on the proba-
bility space (£2,.4, P). For any fixed w € Q, X (-,w) is a real valued function
(vector valued function) defined on T, called a sample path or realisation
of the stochastic process. The standard notation suppresses the variable w,

so that a stochastic process is written {X(¢)}.

The theory of stochastic processes is concerned with the structure and
properties of {X(¢,w)} under different assumptions. The main elements
which distinguish stochastic processes are the state space S, which is the
set of values the random variable X (¢,-) may take, the index set T', and the
dependence relationships among the random variables X(¢,-).

If the state space S = {0,1,2,---}, the stochastic process {X(¢)} is
described as integer valued. If S is the real line (—o0,00), {X(¢)} is a real
valued stochastic process. If S is a k dimensional Euclidean space, {X(¢)}

is a k-vector stochastic process.

If the index set T = {0,1,2,---}, {X(t)} is a discrete stochastic pro-
cess. If T = (—o00,00), the stochastic process {X(t)} is continuous. Often,
the variable ¢ is interpreted to be time. Then, if T = (—o0,00), {X(t)}

would be a continuous time stochastic process.

1 The notation is special to this Chapter.
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Technical Glossary

Different dependence relationships among the X (t) give rise to differ-
ent stochastic processes. If we wish to characterise the stochastic process
{X(t)}, this requires the knowledge of (countably or uncountably many,
depending on the nature of T') joint distributions of the random variables
(or random vectors) X (t). The set of all such joint distributions:

Fx(t,),X(t2), X(t.)(21, %2, ,Zn)
= [PI‘X(tl) S Ty, X(tZ) S T2, ~°, X(tﬂ) S zn])

for all ¢1,tp,--- ,tn € T, t; #t;, © # j, constitutes the probability law of
the stochastic process.

Generally, the random variables X(¢) are interdependent. If, for all
choices of t;,--- ,t,, t; € T such that

fhi<lsa<--- <1,
the random variables
X(t2) — X(t1), X(t3) — X(t2),--, X(tn) — X(tn-1)

are independent, then {X(t)} is a stochastic process with independent in-
crements. If the index set T contains a smallest element ¢, it is assumed
that the random variables X (t0), X(t1)— X (t0), ---, X(tn) — X(tn-1) are
independent.

If the index set T' = {0,1,2,---}, then a stochastic process with inde-
pendent increments reduces to a sequences of independent random variables
Z(0)=X(0), Z@)=X(i)-X(t-1),i=1,2,---,n.

If (for any t) the distribution of the random variables X (¢t + h) — X(t)
depends only on the length h of the interval and not on ¢, the stochastic
process {X(t)} is said to possess stationary increments. Given a stochastic
process with stationary increments, the distribution of X(t, + h) — X (1)
is the same as the distribution of X(¢2 + h) — X(¢2), no matter what the
values of t;, t5 and h.

A stochastic process {X(t)} is said to be strictly stationary if the joint
distribution functions of the two sets of random variables:

{X(tl +h)) X(t2 +h)’ T X(tﬂ +h)}’ {X(tl):X(t2)"" 1X(tn)}

11



Pricing Foreign Ezchange Options

are the same for all A > 0 and all choices of {t;,1s, -+ ,t,} from T. This
condition says that the stochastic process is in probabilistic equilibrium, so
that the specific instances at which we examine the process are irrelevant.
In particular, the distribution of X (t) is the same for each t € T'.

If the stochastic process {X (t)} possesses finite second moments and if
cov[X(t), X(t+h)] depends only on h for all t € T, it is said to be wide sense
stationary. A stationary stochastic process with finite second moments is
wide sense stationary, but there are wide sense stationary stochastic pro-
cesses which are not stationary. In economics, stationary stochastic pro-
cesses are frequently used in rational expectations models, to characterise

stochastic equilibrium (in the macroeconomic sense).

3.3 Martingales

Let {X (¢)} be a real valued stochastic process with a discrete parameter

set T. Then it is a martingale if:
(a) E[|1X(®)]] <o, VtET,

(b) E[X(ta+1)|X (1) = a1, X(¢2) = az,---, X(tn) = an] = an, for any
t1 <tz < - <ty <tpy1, LET.

More generally, if {X(t)} and {Y(¢)} are stochastic processes with the
discrete parameter set T, X{(t)} is a martingale with respect to {Y'(¢)}, if:

(a) E[|X(t)]] < o0, VEET,

(b) E[X(tn+1)'Y(t1) = bl; Y(tz) = bz,-" y Y(tn) = bn] = bn, for any
t1 <ty < - <ty <tpyy, L ET.

Martingales are considered to be appropriate models for fair games, in
which the random variable X (t) represents the amount of money a player
possesses at time ¢. The martingale property states that the average amount
the player would have at time ¢,41, given that he has a,, at time t,,, is equal
to a, regardless of what his past fortune has been.

3.4 Markov Stochastic Processes

A Markov stochastic process has the property that, given the value of

12
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X(s), the values of X(t), t > s, do not depend on the values of X(u), u < s.
That is, the probability of any particular future behavior of the process,
when its present state is known exactly, is not changed by knowledge about
its past behavior.

More formally, if for any

1 <ta < - <1ty <,
Prla < X(t) < b|X(t1) = z1, X(t2) =22, -, X(tn) = 2]
=Pr{a < X(t) < b|X(tn) = za),

then {X(t)} is a Markov stochastic process.

Suppose T = (—00,00), and A = (a,b] is an interval of the real line.
The function

P(z,s;t,A)=Pr[X(t) € AlX(s) =z], t>s,

is called the transition probability function of the Markov stochastic process
{X(t)}. In particular, it can be proved that the probability distribution of
the set of random variables {X (t;), X(f2),--- , X(¢.)} (the probability law
of the stochastic process) can be found in terms of the transition probability
function of the process and the initial distribution function of X(t).

A Markov stochastic process {X(¢)} with a finite or countably infi-
nite state space S = {0,1,2,--- ,n} or S = {0,1,2,---} is called a Markov
chain. A Markov stochastic process {X(t)} for which all sample functions
{X(t,w), t €T = (—00,0]} are continuous in t is called a diffusion process.
Under certain conditions, the transition probability function P(z,s;t,-) has
a transition density function p(z,s;t,:). A Markov process is said to pos-
sess stationary transition probabilities if the transition probability function
P(z,s;t,-) (and the transition density function p(z,s;t,-), if it exists) is a
function only of (¢ — s). Notice that a stochastic process with stationary

transition probabilities is not necessarily stationary.

3.5 Random Walks

A discrete time Markov chain is a Markov stochastic process with a
finite or countably infinite state space S = {0,1,2,---}, and index set T =

13
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{0,1,2,---}. It is common to write a Markov chain as {X(n)} or {X,}
instead of {X(¢)}, and to say that X, is in state i if X, = 1.

The probability of X, 4+, being in state j, given that X, is in state 2,
called a one-step transition probability, is denoted by:

PR = Pr(Xpg1 = §|Xa = 9).

The notation emphasises that in general, the transition probabilities of the
Markov chain depend on the initial state 7 and final state 7, and on the time
interval over which the transition occurs (n,n + 1). If one-step transition
probabilities are independent of the time of transition (n), then (as we have

seen) the Markov chain possess stationary transition probabilities.

In this case,
’ +1 —
P,'J' "t = P;.

Since F;; is a probability,

[o.°]
P;>0,4,5=0,1,2,---, ZPii:l’ i=0,1,2,--
j=0

(The summation condition expresses the fact that some transition occurs in
each step, or each trial, of the process.) It can be shown that the Markov
chain is completely determined once F;; is known for all 7 and j, and the
probability distribution of X is specified.

A random walk is a Markov chain in which X,, if it is in state 7, can in
a single transition either remain in state ¢, or move to one of the adjacent
states ¢4+ 1 or ¢ — 1. In this case:

Pr(Xpt1 =i+ X, =) =p;,
PI'(X,H.] =1i- IIX,; = l) = q;,
Pr(Xn41 = i|Xn =) =,
where p; >0, >0, r; 20, pi+¢gi+ri=1,:i=1,2,---, po >0, rg >

0, po+ro=1 Ifp,=¢ =p>0and r; =7 > 0, the random walk is

symmetric.

14
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The fortune of an individual in a game is often depicted by a random
walk stochastic process. Suppose the player has fortune k and plays a game
against an (infinitely rich) adversary, with the probability p; of winning
one dollar and probability ¢x = 1 — pi of losing one dollar in each trial, and
ro = 1. If the random variable X,, represents the individual’s fortune after
n trials, the stochastic process {X,} is a random walk, known as gambler’s
ruin. (Once state 0 is reached, the process will remain in it.)

3.6 Brownian Motion

The study of Brownian motion began with the observation by the Scot-
tish botanist R. Brown in 1827, that small particles like pollen grains im-
mersed in a liquid exhibit ceaseless irregular motions. In 1905, Einstein
explained this phenomenon by a theory in which the particles under obser-
vation are subject to perpetual collisions with the molecules of the surround-
ing medium. Einstein’s results were later extended by various physicists and
mathematicians, for example N. Wiener and S. Chandrasekhar. (Brownian

motion is also known as a Wiener stochastic process.)

At time t € T = (—00,0], let X(t) denote the displacement (from a
starting point along a fixed axis) of a Brownian particle. The displacement
X (t) — X(s) over the time interval (s,t) can be regarded as the sum of
a large number of small displacements. The central limit theorem is then
applicable, so we can assert that the random variable X (t)—~X(s) is normally
distributed. It is intuitively clear that the displacement X (t)— X (s) depends
only on (t—s) and not on the time we begin the observation. Moreover, it is
reasonable to assume that the Brownian motion is in stochastic equilibrium,
in the sense that the distribution of X (¢t + h) — X (s + h) is the same as the
distribution of X(t) — X(s), for all h > 0.

Given these observations, the Brownian motion stochastic process {X(t),
t > 0} possesses the following characteristics:

(a) Given ty < t;--- < t,, the increments X (t1) — X(to), -+, X(ts) —
X (ta-1) are (mutually) independent random variables;

(b) the probability distribution function of X(t) — X(s), t > s, depends

15
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only on (t — s) and not on t or s;

(<) Pr[X(t)—X(s) < z] = 1/o/[27(t - 5)] ffoo exp{—u?/[20%(t —5)]} du,

where t > s and ¢ i1s a positive constant.
Assume that for each sample path of the process, X(0) = 0. It can
then be proved that, conditional upon X (0) =0,

E[X®#)] =0, var[X(t)] = o,

and that for 0 < t; < t3 < --- < t, < t, the conditional probability
distribution of X(t) given X(t1), X(t2), ---, X(¢s) is

Pr[X(t) < z|X(t1) =21, X(t2) =22, -+, X(ts) = zn]

- a\/_ﬁ%——ﬁ/_; exp {_Fl’(:—ﬂ—_t)} du.

A discrete approximation to Brownian motion is provided by a sym-

metric random walk.

3.7 Geometric Brownian Motion
Let {X(t), t € [0,00)} be a Brownian motion stochastic process. Brown-
ian motion with drift is a stochastic process {U(t), t € [0,00)}, where

U(t) = X(t) + ut,

and the drift parameter x is a constant.

Alternatively, we can define a Brownian motion with drift to be a sto-
chastic process {U(t), t € [0,00)} with the properties:

(a) the increments X (t + s) — X(s) are normally distributed with mean u

and variance 02t, where g and o > 0 are constants;

(b) foreveryt; <t < --- < t,, theincrements X(t3)—X(t1), -, X(t,)—
X (tn-1) are independent random variables with distributions given in

(a);

(c) for every sample path, X(0) =0, and X (¢,w) is continuous at t = 0.

16
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Let {U(t), t € [0,00)} be a Brownian motion stochastic process with
drift coefficient u. The stochastic process defined by:

Y(t) =explU®)), t20,

is called geometric Brownian motion. (The state space of the process is
(0,00).) It can be shown that the random variable Y(¢) is lognormally
distributed with mean and variance:

E[Y(#)|Y(0) = Yy] = Yoexp {ut + %azt] , and

var[Y (1)|Y (0) = Yo] = Y¢ [exp(2pt + o%t)][exp(a? ~ 1].

That is, Y (¢) has the probability density function:

— ut)?
exp{_ﬁlggy_u)}, y>0.

fly)= YT

1
yo/2xt

3.8 Formulae from Stochastic Calculus

Consider a probability space (2, A, P) and a stochastic process { X (t,w)},
t € [0,T]. Let o(t,w) be a non-anticipating function and f(¢,w) be another
function (both defined by properties which we can take for granted here).
Then the stochastic process { X (¢,w)} or {X(t)} has a stochastic differential
denoted by:

dX(t) = f(t)dt + o(t)d2(2),

where (see §3.6 above) {dz(t)} is a Wiener (Brownian motion) stochastic
process with E[dz(t)] = 0, var[dz(t)] = dt.

Let u(t, X) be a continuous non-random function with continuous par-
tial

derivatives. Then Itd’s lemma states: if the stochastic process {Y (¢,w)}
or {Y(¢)} is such that we have Y (t) = u(¢, X(t)), it also possesses a sto-
chastic differential given by:

Ju 9 0%u

Y (1) = [E 22 10)+ 500) axz] dt + %a(t)dz(t).
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As we will see below, Ité’s lemma is fundamental to Black and Scholes’
theory of option pricing.
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CHAPTER 9
CONCLUSIONS

The appropriate choice of assumptions is a matter of primary impor-
tance in applied economics. In option pricing, it is generally assumed that
the underlying asset has a price which fluctuates over time as a geomet-
ric Brownian motion. Since a number of problems then arise, the present
volume proposes an approach to the valuation of foreign exchange options
based on an alternative assumption. Definitions and terminology are in-
troduced in Chapter 2. A technical glossary is given in Chapter 3. The
remainder of the book is devoted to a new stochastic specification to model
the spot price of the representative currency underlying foreign exchange
options, and to showing that it is free from the problems which arise under
the standard geometric Brownian motion assumption. An example is pre-
sented in Chapter 4 to convince the reader of the importance of stochastic
assumptions in option pricing, and-to demonstrate how a different specifi-
cation leads in general to a different valuation formula. Chapter 5 surveys
the Black-Scholes (1973) theory, which is the basis of modern work on op-
tion pricing. It is shown in Chapters 6 and 7 that two serious problems
arise in this theory. First, since it is assumed that the price of the under-
lying asset follows geometric Brownian motion, it is possible for assets to
exist which lead the investor to “almost certain ruin” (Samuelson 1965), in
the sense that over time their prices would drop to zero with probability
one, positive and increasing expected rates of return notwithstanding. The
technique commonly used to solve Black-Scholes differential equations for
option prices does not exclude such assets, which makes it difficult to main-
tain an (general) equilibrium interpretation of the resulting option price.
Second, given the geometric Brownian motion assumption, the price of an
asset displays the characteristics of a random walk. Its price at any point
of time in the future depends solely on the present price. This property
has been called into question by recent research. For example, it is shown
that returns to U.S. common stocks in the postwar period show significant
non-random walk behavior, in the sense that runs of high and low returns

tend to follow one another.
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To overcome the difficulties arising from the assumption of geometric
Brownian motion, Chapter 7 proposes an alternative stochastic specification
to model the dynamic behavior of asset prices, in particular the price of the
asset which underlies the representative option. We characterise the solu-
tion of the resulting system of stochastic differential equations in the most
complete form known, by obtaining a closed form expression for the transi-
tion density function of the asset price. It is shown that non random walk
effects can be incorporated into the analysis, and that the stochastic process
of the asset price excludes the possibility of almost certain ruin. Since “the
option valuation problem is equivalent to the problem of determining the
distribution of the asset price”, we proceed to take mathematical expecta-
tions directly in terms of the transition density function, to illustrate how

an exact formula can be found to evaluate options on the asset.

Chapter 8 shows in detail how the new stochastic specification can
be used to price options on foreign exchange. In contrast to the random
walk restriction imposed by the standard theory, we are able to incorporate
a fundamental result of the theory of international trade, that over time
the spot price of a currency (its exchange rate) converges to its purchasing
power parity. It is also shown that the exchange rate process excludes the
possibility of almost certain ruin. Computational aspects of the formula are
also discussed, in particular, the availability of data, and the methods by
which the parameters in the option price formula can be estimated.
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A Note on Software

A software package to compute the prices of foreign exchange options
using formula (7.15) is being developed by the authors, under sponsorship

from Cypress International Investment Advisors Ltd.
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