
Emerging infectious diseases represent major threats to public health. SARS-CoV-2, a 
novel coronavirus that became known as the COVID-19 disease, not only resulted in 
very high numbers of infections and deaths all around the world, but also led to huge 
economic losses and social disruptions that threatened global security. While every 
pandemic is unique—and COVID-19 certainly has a set of unique manifestations as 
noted in Chapter 1—when a new disease, or a new variant of an old one, bursts upon 
the scene, four questions urgently need answers:

• How does it spread and how fast will it spread?
• How many cases will require hospitalisation or other emergency medical atten-

tion, and when will these needs arise?
• How many deaths will there be?
• What can be done to change and improve the outcome?

Mathematics played an important role in helping policy-makers and healthcare profes-
sionals answer these questions when COVID-19 emerged. Mathematical modelling 
provided quick, approximate answers. Its predictions improved as more information 
was gathered that could be applied to help stem the course of the disease. Over the 
course of COVID-19, including its variants, mathematics contributed greatly to fight-
ing the pandemic. Much learned research was produced all around the world, resulting 
in many publications on all aspects of the disease.

But mathematics helps in another way. When a disease first appears and begins to 
spread, the situation is like the proverbial ‘fog of war’. Little is known and it is confus-
ing to try to understand what really matters and what doesn’t. Mathematical modelling 
requires attention only to those variables that actually affect the spread of the disease. 
It tends to focus on the things that matter and removes focus from those that do not, 
providing much-needed clarity. For example, as we will see, from a mathematical 
modelling standpoint, the only things that matter to the spread of disease are (1) the 
number of contacts per day between an infectious person and a susceptible person; 
(2) the probability that the disease will be transmitted during a contact; and (3) the 
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number of days for which an infectious person is infectious. Focusing on those things, 
as a mathematical epidemiological model does, helps policy-makers determine what 
levers they need to push to affect the course of the disease.

While epidemics emerge at least every five years, few of them have caused the high 
level of global concern, strong action, and urgency that COVID-19 did. The reason is 
simple: COVID-19’s combination of transmissivity and virulence led to high hospi-
talisations and deaths. Other epidemics were contained quickly, had low transmissiv-
ity or low virulence, died out on their own after an initial panic (such as severe acute 
respiratory syndrome or SARS), submitted to vaccines or pharmaceutical remedies, 
or became endemic in the global population with varying effectiveness of treatments 
and preventive measures (such as malaria or tuberculosis). What was unique about 
COVID-19 was that mathematical models predicted a very high level of severe cases, 
hospitalisations, and deaths in the tens of millions if immediate action was not taken. 
These predictions were taken very seriously in some countries and acted upon, and 
much less seriously in others, partly because in those countries the mitigating measures 
were not acceptable to many people and to the countries’ leaders themselves. This dif-
ference in national action in response to the predictions, and the explanations for them, 
has widened the gulfs between governmental systems and social contracts, and even 
between social groups within nations. The key catalyst was the predictive models, upon 
which countries could either act firmly, rapidly, and decisively or in a more desultory 
manner, depending on their national philosophies and level of organisation.

How Fast Will It Spread?

At the beginning of any outbreak, the speed of spread is exponential. Exponential 
growth, a concept taught at school, starts slowly at first but then is extremely rapid. 
Exponential growth is often illustrated by the example of placing coins, or grains of rice, 
on a checkerboard with sixty-four squares. One coin is placed on the first square, two 
on the second, four on the third, and eight on the fourth. The number of coins placed 
on a square then continues to double on each square. Most people are completely sur-
prised to learn that by the time the process gets to the 64th square, the number of coins 
placed on that square will be more than 18 million trillion, a number that can be written 
as the number 18 with 18 zeros after it. If they were grains of rice instead of coins, the 
quantity of rice placed on the last square would weigh more than 387 billion tonnes, 
about the weight of Mt. Everest.

In the case of the spread of disease, suppose for example that the number of 
COVID-19 infections doubles every five days. This was roughly the case before any 
measures were taken to stem the spread. As Figure 5.1 illustrates, what doubling every 
five days means is that if the disease began with one person, two people would have 
been infected in five days; four in ten days; sixty-eight people in a (30.5-day) month; 
4,700 people in 2 months; 323,000 in 3 months; and 22 million in four months.
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Suppose that 10 per cent of cases require hospitalisation. Th at would mean that 
at least two million hospital beds would be needed in four months—a tenth of the 22 
million cases. If there were only 900,000 hospital beds available (approximately the 
actual number in the United States in 2021)1 that would mean more than a million 
COVID-19 patients would not have hospital beds. Besides hospital beds, doctors and 
nurses are also essential, but there would be a shortage. Th ere would be other patients 
that needed hospital beds and professional care for other serious medical problems. 
Such a situation would truly be a disaster. In addition to the deaths that would occur, 
what the healthcare community was most concerned about was extremely overbur-
dened medical facilities, supplies, and service professionals. Using China as an example, 
there were only 6.41 public health professionals per 10,000 population at the end of 
2019.2 In other words, it could lead to the health system being totally overwhelmed.

Th ere are only two solutions to such a situation, which should preferably be 
deployed concurrently: construct more hospitals and expand the number of health 
workers very quickly, and constrain the disease from spreading. Since there is a limit to 
building hospitals that quickly, measures had to be taken to stem the growth. It should 
be noted that China developed the fangcang cabin facilities that could be built rapidly, 
and healthcare professionals and personal protective equipment were mobilised and 
dispatched from other parts of the country to send to Wuhan and Hubei during the 
initial outbreaks (see Chapter 9), which helped the situation, but reducing the growth 
rate of COVID-19 remained the goal.

1. American Hospital Association, ‘Fast Facts on U.S. Hospitals, 2022’, accessed 13 September 2022, htt ps://
www.aha.org/statistics/fast-facts-us-hospitals. 

2. Shuangyi Sun, Zhen Xie, Keting Yu, Bingqian Jiang, Siwei Zheng, and Xiaoting Pan, ‘COVID-19 and 
Healthcare System in China: Challenges and Progression for a Sustainable Future’, Globalization and Health
17, no. 1 (2021): 1–8.

Figure 5.1: Exponential growth in case numbers
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The Urgency of Reducing the Rate of Growth

If the growth rate of the infectious disease could be cut in half, then in the example 
above, the number of hospital beds needed in four months would be only 470 (10 per 
cent of 4,700)—the same as the number required in two months under the fast-growth 
scenario—instead of two million. This shows what a huge impact reducing the rate 
of spread by half would make. If the disease continued to spread at the halved rate, 
there would still be a need for 2 million hospital beds in eight months instead of four. 
Perhaps by then, a medicinal cure or a vaccine would be found—or the disease might 
have dissipated on its own by mutation. That would be the hope. Meanwhile, the strain 
on hospitals, medical care workers, and equipment would have eased.

The Determinants of Spread

The answer to the following question is the key to determining how fast the disease will 
spread.

If a given person, let’s call him Bob, has the disease and is infectious, how many 
other people will get the disease from Bob? The answer depends on the answers to 
three further questions:

• How many susceptible people (people who can catch the disease) does Bob 
interact with each day?

• How likely is it that each susceptible person will catch the disease from Bob 
when Bob interacts with them?

• For how many days is Bob infectious?

For example, suppose Bob interacts with an average of ten people a day, and they are 
all susceptible to the disease. Let’s assume none of the ten people has had the disease 
and so have no immunity, and that there is as yet no vaccine or cure available. Suppose 
that each time Bob interacts with someone, let’s say Alice, there is a one in 20 chance 
that Alice will catch the disease from Bob. That is, the probability that Alice will catch 
the disease from Bob during their interaction is 0.05. To put it another way, for every 20 
susceptible people that Bob interacts with, one catches the disease.

And suppose further, for our example, that Bob is infectious for six days. Thus, 
Bob interacts with ten people each day for six days. With each interaction, there is a 
one in 20 chance that the person will get the disease. Multiplying these three numbers 
together shows how many people Bob will infect: 10 people/day, times 0.05 chance of 
infection, times 6 days = 3 people (10 × 0.05 × 6 = 3). The result of multiplying these 
three numbers together derives what is called R, the reproduction number—that is the 
average number of people each person with a disease goes on to infect. Hence, in this 
example, one infectious person will infect three more people—that is R = 3. If Bob was 
the first person to be infected, so that every person that Bob interacts with is susceptible 
to the disease, then R is designated R0 (pronounced R-zero or R-naught). R0 is called 
the basic reproduction number.
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It is assumed in this example that once infected, the person will not be susceptible 
to it for the duration of the simulation period, which is usually no more than a few 
months. If Bob is not the first person infected, then some people he interacted with 
would have had the disease already and would not be susceptible any longer. When that 
happens, R becomes less than R0. More about that later.

R can also become less than R0 because measures are undertaken to stem the 
spread. Public policy is focused intensively on reducing R.

Measures to Stem the Spread of the Disease

Assuming no treatment or cure is yet available, the number of days for which the dis-
eased person, Bob, is infectious cannot be changed. That leaves only two variables that 
can be altered to reduce the number of people Bob infects:

(1) the number of people Bob interacts with each day; and
(2) the probability that Bob gives the disease to a person when Bob interacts with 

them.

The number of people Bob interacts with each day can be reduced by isolating or quar-
antining Bob to keep him away from other people. The probability that Bob gives the 
disease to another person when he interacts with them can be reduced if Bob wears a 
mask and keeps a distance from the other person of at least one and a half metres.

Neither of these is an absolute guarantee, of course. A very strict quarantine, 
however—such as was adopted in mainland China—is almost an absolute guarantee 
that Bob would not interact with anybody while he is infectious, and therefore would 
not give them the disease.

Less strict isolation or quarantine policies, such as were practised in many countries 
during the COVID-19 pandemic, provide less of a guarantee that an infected person 
would not interact with other people, but they did reduce the number of interactions 
enough to have an important effect. Thus, if Bob can be induced or required to interact 
with only five people a day instead of ten, that will cut the growth rate in half and hugely 
slow the rate of spread.

In addition to the possibility of infection due to direct in-person interactions with 
infected persons, there is the possibility of catching it from touching viral residues on 
surfaces and then touching one’s mouth, nose, or eyes. The risk of infection is reduced 
by sanitising surfaces and washing hands. The route of transmission via surfaces was 
regarded as important during the first six months of the COVID-19 outbreak but it was 
determined subsequently that the chances of contracting the coronavirus from surfaces 
were low, and the major transmission route by far was in-person interactions.3

3. U.S. Centers for Disease Control and Prevention, ‘Science Brief: SARS-CoV-2 and Surface (Fomite) 
Transmission for Indoor Community Environments’, https://www.cdc.gov/coronavirus/2019-ncov/more/
science-and-research/surface-transmission.html.
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Using the Reproduction Number to Predict the Spread

In the simplest possible form of the standard mathematical model, everyone is assumed 
to have the same R—that is each infected person is assumed to infect the same number 
of other people. An important additional number is the generation time. Generation 
time is the time from when a person gets infected until the next person that person 
infects becomes infected. Th e generation time for SARS and COVID-19 has been esti-
mated at seven days. Hence, the fi rst person infected, Bob, will infect three additional 
people in seven days. Each of those people will infect three more people in another 
seven days, for a total of nine people infected aft er 14 days (in addition to the original 
three). And aft er 21 days, 27 more people ( 3 × 9) will be infected.

Figure 5.2 shows the growth of infections over the course of four months if the 
population were always 100 per cent susceptible (or if the population were infi nite).

Of course, the population is not infi nite in real life, and will not always be 100 per 
cent susceptible either. Th e percentage of the population that is susceptible will decline 
over time, as people become infected and recover with immunity, or die as a result of 
being infected. When an increasing percentage of the population is no longer suscepti-
ble, the reproduction rate R declines because the number of susceptible people Bob or 
another infected person interacts with is less. Th is causes the number of infections to 
eventually peak, and then decline, as shown in Figure 5.3. Figure 5.3 assumes the total 
population is 330 million, like the population of the United States, and it is assumed 
that there are no cases brought in from outside the country.

Figure 5.2: Growth of infections, infi nite population
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In Figure 5.3, the dashed line is the number of cases added each day, while the solid 
line is the number of active cases—that is, those that are still viral. If the hospitalisation 
rate is 10 per cent, then the number of people with the disease in hospital would be 10 
per cent of the values on the solid line.

In Figure 5.4 the assumed population is 7.9 billion, which is the world’s popula-
tion today. With a larger population, it takes longer for the disease to peak—about four 
months in this example instead of three and a half.

Figure 5.3: Predicted cases over time—United States size population

Figure 5.4: Predicted cases over time among world population (7.9 billion)
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In Figure 5.5, the cumulative number of cases is also shown, as a dott ed line. Figure 
5.5 shows that in this model, if nothing were done to reduce the growth rate of the 
disease, ultimately almost six billion people would have contracted it, about 75 per cent 
of the world’s population.

Figure 5.6 shows why the number of cases peaks and then declines. In addition to 
the number of daily new cases and currently viral cases over time, it also shows the R
number, with its value on the right axis.

Figure 5.5: Predicted cases over time among world population (7.9 billion)

Figure 5.6: Predicted cases over time among world population (7.9 billion)
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Notice how R declines as the disease catches fire in the population. At the begin-
ning and for a long while, before exponential spread really takes off and the disease 
afflicts a large number of people, R has a value equal to or very close to its initial value 
of R0 = 3 (each infectious person infects three more people). As a larger and larger 
percentage of the population is infected and is no longer susceptible to infection, R 
declines because the number of susceptible people an infected person interacts with is 
now less.

Finally, as the rightmost part of Figure 5.5 shows, the disease no longer grows in 
the community, even though (in this example) 25 per cent of the population is still 
susceptible. This is known as herd immunity (see Chapter 4). What happens is that, as 
the number of people infected starts to decline, the percentage of the people they meet 
who are susceptible declines too. Eventually, they are unable to meet each other before 
the infected people are no longer infectious anymore, and the disease dies out.

The SIR Model

The graphs above are an example of the kind of output produced by the Susceptible-
Infected-Removed (SIR) model. This is the standard model used by most mathemati-
cal modellers of the spread of disease. In this model, the population begins with all but 
one person, the first one infected, susceptible to the disease. Then, as the first infected 
person and gradually many infected people start to interact with the susceptible people 
there is a chance that a susceptible person will become infected. This chance is called 
the transition rate from susceptible to infected. It is often measured—or estimated—as 
a daily probability. Once infected, an infected person has a daily probability of tran-
sitioning to ‘removed’, which can mean either recovered or dead. In either case, that 
person is no longer in the susceptible pool.

The examples shown above are only illustrative and do not represent actual predic-
tions that were made by any specific SIR models. But all predictive models will have the 
same pattern over time, at least in the absence of public policies to alter the predictions.

But All Rs Are Not the Same

Most SIR models do not make the simplistic assumption that every infected person has 
the same R. ‘Compartmental’ models place people into different compartments, at dif-
ferent times of day, in different locales and engaged in different kinds of activities, where 
they will have different Rs when they interact with other people within the compart-
ment, and yet other different Rs when they interact with people in other compartments.

For example, in one model of the spread of influenza, people were put into these 
different compartments: child in household; adult in household; child in small play 
group; child in large day-care centre; child in elementary school; child in middle 
school; child in high school; adult in workgroup; adult in neighbourhood; and adult 
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in community.4 Different contact probabilities were assumed for each pair of possible 
contacts. For example, the probability of contact (per day) of two children in a house-
hold was 0.6 (60 per cent chance of contact), while the probability of contact of two 
children in a large day-care centre was only 0.15, or one-fourth as much. (A contact 
was defined as being within a specified distance of each other for a specified length 
of time.) Different probabilities of contact yield different Rs. The model also needs to 
make assumptions about how much time a child, for example, spends at the day-care 
centre (or school), how much time in the household, and how much in the neighbour-
hood or community. Many assumptions are needed to be fed into a full-scale, advanced 
SIR model. The assumptions are, of course, of necessity imprecise, but they are the best 
that can be made.

Running the SIR Model Base Case

Once all these assumptions are fed into the model, it can be run for a large popula-
tion that is allocated to the various compartments (another set of assumptions, usually 
obtained from demographic data). Running the model entails beginning with one or 
only a few infected cases, then simulating the progress of the spread day by day after 
that. Each day, some proportion of the susceptible people will transition to infected, 
and then, some proportion of the infected people will transition to the removed cat-
egory. This will provide how many of the population are still susceptible, infected, or 
removed on each future day.

The model will also make additional assumptions about how many of the infected 
will be hospitalised, and how many will die. These assumptions may be different for dif-
ferent age groups. Hence, the models can make a prediction not only about how many 
people will be infected on each day in the future, but how many will be hospitalised and 
how many deaths there will be.

Hypothesising Public Health Policies and Changing the Assumptions 
Accordingly

The mathematical modelling base case is run under the assumption that nobody changes 
the way they lived their lives before the disease started to circulate. This is of course not 
a realistic assumption, but it is standard practice for modelling. In reality, people would 
likely change their routines and their number of interactions with other people out of 
fear of the disease. However, that is not likely to reduce the spread enough. Up until 
March 2020, in the United States and the United Kingdom, the public policy approach 
was to do practically nothing.

4. Timothy C. Germann, Kai Kadau, Ira M. Longini, Jr., and Catherine A. Macken, ‘Mitigation Strategies for 
Pandemic Influenza in the United States’, Proceedings of the National Academy of Sciences 103, no. 15 (2006): 
5935–5940 (supplemental materials).



Michael Edesess 85

Th is changed dramatically aft er the results of research by academics at Imperial 
College, London, were announced in mid-March 2020.5 Th at research predicted 
510,000 deaths in the United Kingdom and 2.2 million in the United States if nothing 
were done to mitigate the spread of COVID-19. Th at caused concern. Th e Imperial 
College study also explored how those numbers of deaths could be reduced if certain 
public policy interventions were adopted to contain the spread. Th ose interventions 
included: case isolation in the home; voluntary home quarantine; social distancing of 
those over 70 years of age; social distancing of the entire population; and closure of 
schools and universities.

Compared to measures that had already been taken in China beginning in late 
January, these were mild measures. In China, much stricter measures were taken to try 
to ensure that the disease did not spread any further at all, aft er the fi rst few weeks of 
spread. Th ese measures were notably successful, as discussed in Chapter 9.

In the Imperial College study, further assumptions had to be made about how 
much each of the potential policies to contain the spread of the disease would reduce 
the Rs. Th en for each possible containment policy, and combination of policies, the 
Imperial College team reran the model. Figure 5.7 shows the predictions from the 
Imperial College study’s results for several diff erent policy measures and combinations 
thereof.

5. Neil M. Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, et 
al., ‘Report 9: Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and 
Healthcare Demand’, Imperial College COVID-19 Response Team, 16 March 2020. 

Figure 5.7: Mitigation strategy scenarios for the United Kingdom showing critical care bed 
requirements. Courtesy of Neil M. Ferguson et al.
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The solid black (‘Do nothing’) line (line with the highest peak number of criti-
cal care beds) shows the unmitigated epidemic (base case). The light grey line (line 
with the second-highest peak) shows a mitigation strategy incorporating the closure of 
schools and universities; the line with the third-highest peak shows case isolation; the 
line with the fourth-highest peak shows case isolation and household quarantine; and 
the line with the lowest peak shows case isolation, home quarantine, and social distanc-
ing of those aged over 70. The shaded area indicates the 3-month period in which these 
interventions are assumed to remain in place.

In order to arrive at these predictions, the modellers had to make assumptions 
about how much each of the interventions would reduce the rate of spread. For 
example, they assumed that for ‘case isolation in the home’, symptomatic cases would 
stay at home for seven days and that this would reduce non-household contacts by 75 
per cent during that period. They also assumed that 70 per cent of households would 
comply. For ‘social distancing’, they assumed that it would reduce contact rates by 50 
per cent in workplaces and reduce other contacts by 75 per cent, but that as a result, it 
would increase household contacts by 25 per cent (because people would be at home 
more), and they assumed 75 per cent compliance with the policy.

Each of these assumptions for a mitigation policy changes the contact probability 
assumptions and the Rs when the model is run. This is how the alternative sets of pre-
dictions for different mitigation strategies are arrived at in the modelling process.

Interventions to Reduce the Rate of Spread

As mentioned before, there are two ways to reduce the rate of spread: reduce the 
number of contacts an infected person has and reduce the probability that the person 
contacted will catch the disease. Reducing the probability that a person will catch the 
disease from an infected person is relatively straightforward—wear a mask (and pos-
sibly other protective gear) and maintain a distance. Therefore, almost all of the inter-
vention strategies have one objective: to reduce the number of contacts made between 
infected persons and susceptible persons.

The first priority is to identify infected individuals. This can be done by means of 
testing for COVID-19 and tracing the contacts of anyone who tests positive. Beyond 
that, it is all about isolating and quarantining anyone who either has tested positive for 
the virus or has been in contact with someone who tested positive, or even someone 
who was in contact with someone who was in contact with someone who tested posi-
tive—unless they have repeatedly tested negative. How effective these strategies are, 
depends on how strictly they are enforced, or adhered to.

Superspreaders

As noted above, not every infected person has the same R. As a matter of fact, studies 
have shown that the dispersion of Rs among infected individuals is very wide. This 
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dispersion is measured by another letter of the alphabet, k. (Confusingly, a small k 
indicates wide dispersion—it has been estimated that k for COVID-19 has a low value 
of 0.1).6 It has been found that some infected people, and some gatherings of people, 
contribute to the overdispersion of Rs. In other words, there seems to be a small percent-
age of the infected who have very high Rs, whether because they carry a high viral load 
or because they interact at close quarters with a large number of people. It appears that 
a small percentage of infected people do most of the spreading of the virus, while the 
much larger percentage spread it relatively little. For example, a two-and-a-half-hour 
chorus practice in the American state of Washington in May 2020, attended by sixty-
one persons among whom there was one person infected with COVID-19, resulted in 
at least thirty-two additional cases and perhaps as many as 52, when secondary infec-
tions are considered.7

Both people and events that spread the virus unusually widely are referred to as 
superspreaders. The importance of the phenomenon of superspreading—both super-
spreading individuals and superspreading events—is that it has implications for contact 
tracing.

Contact tracing has typically been done when a person is confirmed to be infected. 
They are then questioned as to which other people they interacted with and what venues 
they have been to since they got infected. This way, people who may have caught the 
virus from them can be identified, tested, and isolated if infected. This is called forward 
tracing, because it identifies contacts going forward in time beginning with when the 
person became infectious.

The fact of superspreading events and people indicates that more cases can be 
winnowed out by doing backward tracing. This means that in addition to identifying 
with whom the infected person has interacted since becoming infectious, the investi-
gation goes back to the event or person from whom the infected person contracted 
the disease. Because the infecting person or event may have been a superspreader, the 
backward tracing process seeks to identify who else may have contracted the virus from 
the superspreader.

Figure 5.8 shows why more cases of infection are discovered by doing both forward 
and backward contact tracing.8 Black dots indicate detected cases, dark grey dots quar-
antined cases, and light grey dots undetected cases. This chart shows two infectious 
cases are discovered, ‘Index case #1’ and ‘Index case #2’ (dark grey dots to the left and 
right of chart A). They have a common source in a ‘Primary case’, but that primary case 

6. Akira Endo, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Sam 
Abbott, Adam J. Kucharski, and Sebastian Funk, ‘Estimating the Overdispersion in COVID-19 Transmission 
Using Outbreak Sizes Outside China’, Wellcome Open Research 5 (2020).

7. Lea Hamner, ‘High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice—Skagit County, 
Washington, March 2020’, Morbidity and Mortality Weekly Report 69 (2020).

8. See Akira Endo, Quentin J. Leclerc, Gwenan M. Knight, Graham F. Medley, Katherine E. Atkins, Sebastian 
Fun, et al., ‘Implication of Backward Contact Tracing in the Presence of Overdispersed Transmission in 
COVID-19 Outbreaks’, Wellcome Open Research 5, no. 239 (2020), https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7610176.3.
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is initially undetected (light grey dot at the top of chart A). In (A), only forward tracing 
is conducted, identifying only two infected persons, while those coloured light grey 
are undetected. In (B), backward tracing is conducted in addition to forward tracing. 
Backward tracing identifies the primary case, which therefore has become a black dot, 
and then forward tracing from there identifies additional contacts that were made with 
potentially infectious people (there are still two light grey undetected cases in (B) 
because contact tracing is imperfect). Some of those additional contacts tested positive 
and are quarantined.

The Actual Pattern of Cases and Infections over Time

The results of simulations shown in Figures 5.3 through 5.7 do not represent what 
happens in the real world. They show only what will happen if a single course of 
action—or no action—is pursued without deviation. In the real world, actions taken in 
response to the disease change over time, and the disease can change too.

The best analogue to the spread of a disease is the spread of a wildfire. If the wildfire 
finds a patch of kindling or dry wood or dry shrubbery it can spread extremely quickly. 
If that fire is then put out but not completely extinguished, so that it smoulders for a 
while afterwards, its smouldering remains can again find or leap to another patch of 
kindling or dry wood or shrubbery. A fire that is not completely extinguished can even 
smoulder underground, undetected, and emerge at a distance to flare up very rapidly 
again. The spread of a viral disease is similar if it is not completely extinguished. If there 
are remaining viruses lurking in the population then it can flare up again, astonishingly 
quickly, just as it could at the onset of the disease.

China is the most prominent exception among countries. For other countries, the 
objective of their intervention measures was not to eradicate COVID-19 completely, 
but to ‘flatten the curve’, meaning to reduce the level of the predicted peak of cases, 
hospitalisations, and deaths. A key objective was to get the number of hospitalisations 
and the demand for intensive care units, ventilators, and other specialised equipment 
below what was expected to be available. Once that objective was achieved, the inter-
ventions were often eased up. However, that meant that the virus was still smouldering. 
Consequently, it could—and often did—leap into flame again. When that happened, 
interventions were re-imposed or tightened, with the result that the pattern of cases 
over time had multiple peaks. This pattern of interventions over time, in which initially 
a serious effort was made to suppress the virus, which was then slackened when it was 
successful, and then re-imposed when the virus flared up again, was called ‘the hammer 
and the dance’ by an early commentator on COVID-19, Tomas Pueyo.9

For example, Figure 5.9 shows the number of daily cases in France from March 
2020 to December 2021.

9. Tomas Pueyo, ‘Coronavirus: The Hammer and the Dance’, 19 March 2020, https://tomaspueyo.medium.
com/coronavirus-the-hammer-and-the-dance-be9337092b56.
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Th e peaks represent when the virus fl ared up. In this graph of actual cases over 
time, a trough does not represent when the virus dissipated due to herd immunity—as 
it did in the more theoretical Figures 5.3–5.6—but when government interventions 
that were tightened or imposed repeatedly in response to the peaks started to be loos-
ened again. Also playing a role was the programme of vaccinations that began at the end 
of December 2020. In December 2021, Figure 5.9 shows, cases rose sharply because of 
a new Omicron variant.

Notice that although measures to reduce the rate of growth of cases, hospitalisa-
tions, and deaths are oft en referred to as strategies for ‘fl att ening the curve’, they do not, 
in fact, fl att en the curve. Th e phrase ‘fl att ening the curve’ really refers to the att empt 
to reduce the heights of the peaks so that they do not exceed a nation’s capacities, for 
example for hospital beds. Perhaps instead of the phrase ‘fl att ening the curve’, a more 
accurate phrase should be borrowed from the electric power industry: ‘peak shaving’.

How Long Should Someone Who May Have the Disease Be 
Quarantined?

Some people are impatient with the length of time for which they need to quarantine, 
especially aft er returning from a foreign country. For example, in Hong Kong, many 
travellers returning from overseas were required to quarantine for 21 days at one stage, 
and then to be tested twice even aft er quarantine. If the period of time during which 
someone infected with the disease is infectious averages only several days, why does the 
quarantine period need to be so long?

Figure 5.9: Daily new COVID-19 cases in France per million people (seven-day rolling average) 
to December 2021. Courtesy of Our World in Data.
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The answer has to do with the mathematical concept known as ‘fat tails’. Although 
the average infectious period may be only a few days, there will be variations. Some 
people will be infectious for longer times, some for shorter times. There will be a dis-
tribution of infectious periods, from only three or four days to weeks. Such distribu-
tions typically have ‘fat tails’—that is, there will be very few people who will have much 
longer infectious periods than others (i.e., they will be way out on the right-hand tail of 
the infectious period distribution).

Suppose only one in 10,000 returnees from overseas is infectious for as long as 21 
days. That means that if 10,000 people return, there is a good chance one will still be 
infectious in 21 days, and there is no way to know which one. That is too big a chance 
to take when a single carrier can ignite a flare-up that can spark exponential spread. If 
the goal is to ensure no spread, it is prudent to quarantine them all for 21 days. Even 
supposing that only 1,000 people return, then a chance of one in 10,000 is a chance of 
one-tenth in 1,000 or still a one-in-ten chance that of those 1,000 one will be infectious 
in 21 days and ignite exponential spread.

Estimating the Input Parameters to a COVID-19 Prediction Model

Modelling the course of a disease using a predictive simulation requires inputting to 
the model many assumptions, such as R0 numbers, hospitalisation rates, death rates, 
generation time, etc. These are called the parameters of the model. They can also include 
additional numbers, like the percentage of potentially susceptible people who have 
been vaccinated. And they can include assumptions about what percentage reduction 
in rates of personal contact will occur when certain mitigating measures are introduced, 
like school closures.

Because the spread of a disease is exponential in its early stages, decisions need 
to be made very quickly on whether to adopt policies to clamp down on the rate of 
growth. These decisions are made with the aid of the mathematical model’s projections. 
For the models to make reasonably accurate predictions, they need reasonably accurate 
parameters to be input into them. Estimating those parameters in the beginning stages 
of a new and previously unknown disease, however, is difficult because little data is 
available.

To help understand the difficulty, consider this dilemma that arose around the end 
of 2021 and the beginning of 2022. The COVID-19 Omicron variant had just begun 
to spread rapidly, out-competing the previous variant, Delta, and accounting for the 
vast majority of COVID-19 cases. Figure 5.10 extends the Figure 5.9 graph of cases in 
France per million people through the end of the year 2021 and into the beginning of 
2022.

Notice how the daily cases of Omicron had, within a space of only two to three 
weeks, shot up to be much greater than the highest rate before Omicron appeared. The 
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R0 for Omicron was estimated to be as high as 10,10 on par with the formerly rapidly 
spreading childhood diseases measles, mumps, and chicken pox (until almost all chil-
dren were vaccinated for them). An R0 of 10 implies a doubling of cases approximately 
every two days.

Early data indicated that the eff ects of Omicron were milder than previous vari-
ants, and it was less likely to require hospitalisation. But because it spread so much 
more rapidly it might require more hospital beds than previous variants, even though 
the ratio of hospitalisations to cases was lower. It should be noted that vaccination does 
not prevent infection, but it lowers the risk of the infected person becoming very sick. 
With Omicron, the rate of hospitalisation was much lower for those who had been vac-
cinated. Th e disease manifested itself as less severe in an infected person who had been 
vaccinated.

In the United States, there was a desire to estimate what percentage of vaccinated 
and unvaccinated people who caught Omicron would need hospitalisation. To gather 
the data needed for this estimate, before Omicron had already spread very widely, was 
extremely diffi  cult. Hospitalisations lag case discoveries by about two weeks, so the 
empirical rate of hospitalisation would not be known until at least two weeks aft er 
Omicron’s onset. Furthermore, Omicron fi rst took hold in regions in the United States 
where the vaccination rate was high, such as New York, Massachusett s, and New Jersey, 

10. Talha Khan Burki, ‘Omicron Variant and Booster COVID-19 Vaccines’, Th e Lancet Respiratory Medicine 10, 
no. 2 (2022): e17.

Figure 5.10: Daily new COVID-19 cases in France per million (seven-day rolling average) to 
mid-January 2022. Courtesy of Our World in Data.
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while the spread to regions with lower rates of vaccination, such as rural and Southern 
regions, took a week or two longer. Hence, it was diffi  cult to estimate the hospitalisation 
rate for the unvaccinated until as much as a month aft er Omicron’s onset, by which time 
it might have already peaked.

Estimating a Rate of Growth from Early Data

As an example of how a parameter can be inferred from a small amount of early data, 
suppose that a researcher, Molly, has only two weeks of data for the daily number of 
cases of a disease. Let us suppose that the number of cases can be assumed to grow 
exponentially for at least the next six weeks. How can Molly infer the rate of exponen-
tial growth, so that she can extrapolate that rate of growth from the fi rst two weeks to 
the following six weeks?

Figure 5.11 shows the data for the fi rst 14 days, while Figure 5.12 extends this 
graph to several possible hypothetical future paths with 14 per cent, 17 per cent, 20 per 
cent, and 23 per cent daily rates of growth of cases.

Which of these possible growth rates best fi ts the data we have, which is only for 
the fi rst 14 days? Figure 5.13 shows 14 per cent, 17 per cent, 20 per cent, and 23 per 
cent daily rates of growth of cases for the fi rst 14 days.

Figure 5.13 shows the 20 per cent growth rate fi ts the data best. (A statistical best-
fi t test would confi rm this visual impression.) Th erefore, our best-guess projection of 
future cases in the next six weeks is the 20 per cent growth case in Figure 5.12.

In practice, a modeller will show not only the best-guess projection but an error 
band with a range of possible projections. Obviously, which growth rate results from 
the fi tt ing of the 14-day data to a growth rate makes a very big diff erence. As more data 
is gathered, the estimate will be revised.

Figure 5.11: Cases for the fi rst 14 days
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If the model is an SIR model (which is more appropriate for making predictions 
of the spread of disease over a period of several months than an exponential model), 
then a similar approach can be taken to estimating R0 using early data. Several differ-
ent R0s can be tried, and a simulation run for the first few weeks using each of those 
hypothetical R0s. Whichever of those simulations produces the closest match to the 
available data, the R0 that it uses can be adopted for further simulations extended into 
the future.11

Other parameters can be estimated in a similar manner, but a great deal of care 
is necessary because of the mismatches of data and timing. For example, one cannot 

11. The actual methodology used is a little more complicated, but the principle is the same.

Figure 5.12: Projected cases for 8 weeks

Figure 5.13: Cases for the first 14 days
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estimate the hospitalisation rate or the case fatality rate (the ratio of deaths to sympto-
matic cases) by dividing the daily or weekly hospitalisations or deaths by the daily or 
weekly cases for those same days or weeks. Hospitalisations lag the onset of cases—
and therefore when the cases are reported—by roughly two weeks and deaths lag by 
roughly three weeks. Since during the interval between a reported case and a death the 
number of cases could have ballooned, the death rate could be wildly underestimated.

The Problem of Lag Time in Reporting

In the previous example, in order to project the number of cases into the future, it would 
be better to know the R number, the reproduction rate, on each day. This number can 
vary from day to day, depending on what social distancing measures are being imposed 
and adhered to. But the actual R number can only be measured after cases become 
symptomatic and are detected and reported, which can be more than a week after a 
carrier is infected and becomes infectious. Hence, R numbers can only be estimated 
several days after their impact on disease spread.

To estimate the R number in real time, the COVID-19 research team at the 
University of Hong Kong—which had made some of the first estimates of R0, in early 
2020—used a novel method, a method that applies particularly well in Hong Kong. 
Most travellers in Hong Kong use public transportation—buses and the train system 
known as the MTR—and most of those pay by using an Octopus card, which is swiped 
on entry to a train station or bus. The Octopus card is also used for small purchases, 
such as at 7-11 stores.

The level of use of Octopus cards over time is a measure of the level of social mixing. 
The more the Octopus card is used, the more people are using public transportation 
and entering stores, and therefore the more they are making contact with one another. 
The University of Hong Kong researchers calculated the correlation of Octopus card 
use with past R numbers that had been observed after the fact in the population and 
found that the correlation was strong. Therefore, they estimated real-time R numbers 
by applying that correlation to the level of Octopus card use on a given day and even at 
a given hour. Using this estimated R number, they were able to make instantaneously 
updated projections of the subsequent spread of disease.

The Hong Kong team was challenged by the rapid spread of Omicron in February 
and March 2022 to estimate whether and how the spread could be contained. Because 
of the low percentage of vaccinations among the elderly in Hong Kong, as well as the 
close quarters in which people live, the challenge was great, especially in residential care 
homes for the elderly. Their modelling showed that the conclusion was inescapable that 
the spread would not be fully containable (that the R number could not be made to go 
below 1.5) even with the most stringent control measures that would be practicable 
in Hong Kong. But because of the rapid spread, more than half the population would 
be infected and infections would peak by April 2022; however, the risk of resurgences 
would linger.
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Are the Statistics Really What They Seem?

Compounding the difficulty of estimating the parameters of COVID-19 is the fact that 
the statistics gathered from reporting, recording, or observation are often not what they 
seem to be. For example, when the Omicron variant broke out, it was found immedi-
ately that Omicron spread very quickly but it soon emerged that it caused a lower ratio 
of hospitalisations to infections, especially in people who were vaccinated. However, as 
there were so many Omicron infections, the number of hospitalisations was still high. 
The New Yorker magazine, however, noted that a lot of the hospitalisations attributed to 
Omicron, perhaps as many as half to two-thirds of them, were not due to Omicron at 
all:

More than a hundred and fifty thousand Americans are currently hospitalised with 
the coronavirus—a higher number than at any other point in the pandemic. But that 
figure, too, is not quite what it seems. Many hospitalized covid patients have no respira-
tory symptoms; they were admitted for other reasons—a heart attack, a broken hip, 
cancer surgery—and happened to test positive for the virus. There are no nationwide 
estimates of the proportion of hospitalized patients with “incidental covid,” but in 
New York State some forty per cent of hospitalized patients with covid are thought to 
have been admitted for other reasons. The Los Angeles County Department of Health 
Services reported that incidental infections accounted for roughly two-thirds of covid 
admissions at its hospitals.12

Even so, while the hospital admission was for another malady, affliction with the 
Omicron virus could have been a complicating factor, perhaps enough to drive the 
person admitted over the threshold for being admitted to a hospital.

It may seem a simple matter to determine how many deaths were caused by 
COVID-19—just add up all the deaths that were reported to be caused by it. But The 
Economist magazine notes that it is much more complicated than that:

How many people have died because of the Covid-19 pandemic? The answer depends 
both on the data available, and on how you define ‘because’. Many people who die 
while infected with SARS-CoV-2 are never tested for it, and do not enter the official 
totals. Conversely, some people whose deaths have been attributed to Covid-19 had 
other ailments that might have ended their lives on a similar timeframe anyway. And 
what about people who died of preventable causes during the pandemic, because hos-
pitals full of Covid-19 patients could not treat them? If such cases count, they must 
be offset by deaths that did not occur but would have in normal times, such as those 
caused by flu or air pollution.13

12. Dhruv Khullar, ‘Do the Omicron Numbers Mean What We Think They Mean’, The New Yorker, 16 January 
2022. 

13. The Economist, ‘The Pandemic’s True Death Toll’, 2 November 2021, https://www.economist.com/
graphic-detail/coronavirus-excess-deaths-estimates. 
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These complicating factors have caused compilers of statistics to resort to other means 
to estimate the number of deaths due to COVID-19, and sometimes the number of 
hospitalisations.

One common means to estimate deaths that can be attributed to the virus is to 
compare the number of total deaths that occurred while the virus was raging with the 
number of total deaths ‘that would have occurred anyway’. That is, it requires estimating 
a counterfactual: how many deaths would have occurred if there had been no virus?

For example, Figure 5.14 shows, as a wavy solid line, the number of deaths that 
would have been expected each week during the years 2018 through 2021 in the United 
States, extrapolated from the pattern of previous years’ weekly deaths.14 The pattern 
reflects the fact that more deaths occur during the winter months. The vertical bars are 
the number of deaths that occurred.

Notice that until April 2020, the number of actual deaths agreed fairly closely with 
the projected number of deaths from extrapolation. But for most weeks from April 2020 
on, the number of actual deaths exceeded the number of projected deaths, in some 
cases by a wide margin. These excess deaths are very likely attributable to COVID-19. 
For most countries around the world, excess deaths calculated in this manner do not 
agree, in many cases not even closely, with the number of deaths reported to have been 
caused by COVID-19.15 A March 2022, study in The Lancet said that while reported 
COVID-19 deaths worldwide as of the end of the year 2021 totalled 5.94 million, an 
estimated 18.2 million died worldwide because of the COVID-19 pandemic as meas-
ured by excess mortality—more than three times reported deaths (with a 95 per cent 
uncertainty interval from 17.1 to 19.6 million).16 The COVID-19 pandemic has truly 
been a global tragedy.

Decline in Life Expectancy

Another way to measure the impact of deaths caused by the pandemic is to track life 
expectancy before the pandemic, and for the years 2020–2021 during the pandemic. 
It is possible, using mortality data on age at death during a particular year, to calculate 
life expectancy without having to follow a whole cohort of individuals for their entire 
lifetimes; in fact, it is much more accurate than following a whole cohort until each of 
their deaths because life expectancy changes over time.

The method is to calculate the percentage of individuals at each age who died 
during the year. For example, the data may show that 0.1 per cent of individuals aged 
zero to one died during the year, while 9 per cent of individuals aged 90 died during the 

14. National Center for Health Statistics, ‘Excess Deaths Associated with COVID-19’, accessed 13 September 
2022, https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm. 

15. The Economist, ‘Tracking Covid-19 Excess Deaths Across Countries’, 20 October 2021, https://www.econo-
mist.com/graphic-detail/coronavirus-excess-deaths-tracker. 

16. COVID-19 Excess Mortality Collaborators, ‘Estimating Excess Mortality Due to the COVID-19 Pandemic: 
A Systematic Analysis of COVID-19-Related Mortality, 2020–21’, The Lancet 399, no. 10334 (2022): 
1513–1536. 
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year. This enables the construction of an entire actuarial table of probabilities of death 
at each age, from which life expectancy can be calculated.

Not surprisingly, life expectancy declined in several countries. An important 
study,17 not yet peer-reviewed at the time of this writing, calculated life expectancy for 
the three years 2019–2021 (2019 being before the pandemic, and 2020 and 2021 during 
the pandemic) for the United States and 19 peer countries including Austria, Belgium, 
Denmark, England and Wales, Finland, France, Germany, Israel, Italy, Netherlands, 
New Zealand, Northern Ireland, Norway, Portugal, Scotland, South Korea, Spain, 
Sweden, and Switzerland. The decline in life expectancy over the two years from 2019 
to 2021 was by far the largest in the United States. Life expectancy in the United States 
declined by 2.26 years, from 78.86 years in 2019, before the pandemic, to 76.60 years 
two years later in 2021, comprising a 1.87-year reduction from 2019 to 2020 and a 0.39-
year reduction from 2020 to 2021. By contrast, the other 19 peer countries averaged 
only a 0.57-year decrease from 2019–2020 and a 0.28-year increase from 2020–2021. 
Among the 19 peer countries, the greatest decline over those two years was 0.93 years, 
in England and Wales. Life expectancy in the United States was already below that of 
the peer countries before the pandemic; during the pandemic, the gap increased to 
more than five years. However, deaths from drug overdoses in the United States also 
increased by about 30,000 from 2019 to 2021,18 which cannot be directly attributed 
to COVID-19; hence, the decline in life expectancy in the United States may slightly 
overstate the impact of COVID-19.

COVID-19’s Last Gasp? Omicron in Shanghai

At the beginning of March 2022, the Omicron variant of COVID-19 began to spread 
in Shanghai, a city with a population of 25 million in a country of 1.4 billion. China 
had previously locked down very rapidly once the high transmissibility of the disease 
and its virulence became clear and henceforth maintained a ‘zero-COVID’ policy. With 
the exponential spread of the less virulent Omicron variant in Shanghai, the question 
arose as to whether the zero-COVID strategy should be maintained (now also called 
‘dynamic zero’ to account for the fact that absolute zero is virtually impossible), or 
whether something more closely resembling a ‘living with COVID’ strategy should be 
initiated. A mathematical model documented by Chinese and US epidemiologists in 
the journal Nature helped to make the decision.19

The simple SIR model described earlier in this chapter had assumed that once a 
person had contracted the disease, they were no longer susceptible to it, at least not 

17. Ryan K. Master, Laudan Y. Aron, and Steven H. Woolf, ‘Changes in Life Expectancy between 2019 and 2021: 
United States and 19 Peer Countries’, medRxiv 1 June 2022, https://doi.org/10.1101/2022.04.05.22273393.

18. National Center for Health Statistics, ‘Provisional Drug Overdose Death Counts’, accessed 13 September 
2022, https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm.

19. Jun Cai, Xiaowei Deng, Juan Yang, Kaiyuan Sun, Hengcong Liu, Zhiyuan Chen, et al., ‘Modeling Transmission 
of SARS-CoV-2 Omicron in China’, Nature Medicine 28 (2022): 1468–1475.
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for a long time. But experience showed that people could contract the disease more 
than once, even within relatively short periods of time. Consequently, the authors of 
the Nature article used an altered version of the model, instead of susceptible-infected-
recovered they used a susceptible-latent-infectious-removed-susceptible model to 
indicate that a person could go from infected and infectious through recovery to sus-
ceptible again. The ‘latent’ phase indicates that an infected person can be asymptomatic 
in the early stage of the disease.

Running the model produced concerning results, even though Omicron was less 
deadly than previous COVID-19 variants. The authors reported that: ‘We find that the 
level of immunity induced by the March 2022 vaccination campaign would be insuf-
ficient to prevent an Omicron wave that would result in exceeding critical care capacity 
with a projected intensive care unit peak demand of 15.6 times the existing capacity 
and causing approximately 1.55 million deaths.’ The authors were, nevertheless, con-
fident that continued access to vaccines and antiviral therapies, and implementation 
of non-pharmaceutical interventions—i.e., lockdowns, social distancing, isolation, and 
so on—would suffice to prevent overwhelming the healthcare system. Hence, China 
continued with its lockdown approach in Shanghai, even though the Omicron variant 
was less deadly and the lockdown was very painful (see Chapter 9).

Host-Parasite Coevolution and the Disease Endgame

As the disease continues to be endemic in the host population and evolves with 
COVID-19, the virus and its variants become more or less transmissible, and more or 
less virulent—where ‘virulent’ means harmful to the host’s health or, simply, lethal. It 
would help to anticipate and plan for the virus ‘endgame’ if there were a mathematical 
model to predict how the relationship between virus transmissibility and virulence will 
evolve over time. Will the disease evolve to become like the common cold, which is 
highly transmissible but hardly virulent, because the survival rate is virtually 100 per 
cent? Or will it be more like rabies or tuberculosis, which continue to coexist with a 
host population seemingly forever? Unfortunately, although there have been more than 
6,000 papers published on this question, no definitive answer is available.

It would seem a simple matter of applying Darwin’s theory of natural selection to 
the virus’s evolution. What will make virus survival and proliferation more likely—
increased virulence of the disease in the host, or decreased virulence? The relevant 
theoretical relationships in those 6,000 academic papers are expressed in mathematical 
formulas, but we will describe the basic idea.

From the point of view of the host population, the objective is to make the repro-
duction number, R, as small as possible. For the virus, there is also a reproduction 
number R. In this case, R is the number of additional viruses that each virus can spawn 
and transmit to other hosts. The difference between the host R and the parasite’s (that 
is, the virus’s) R is that while the objective of the human population is to minimise R, 
the objective of the virus is to maximise R; i.e., to spread as quickly as possible. Like 
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the host R, the virus’s R is the product of how fast the virus spreads from one host to 
another (its transmissivity), and for how many days it can spread from that host; that is, 
the number of days for which the host is infectious.

For the purposes of this discussion, let us call the latter the duration. The central 
questions in most of the academic papers are: how long is the duration, and how is 
its length related to the transmissibility? The longer the duration, the more the virus 
would be transmitted to other hosts; its R would be higher.

Until the 1980s, the prevailing theory was the ‘avirulence hypothesis’.20 This 
hypothesis assumed that for a virus to be more transmissible, it would have to be less 
‘virulent’—that is, less lethal—because if it killed the host, that would shorten the 
duration of the time during which the virus could be transmitted. Therefore, like the 
common cold, the virus would become milder over time, even if more transmissible. 
The reason for this assumption was that the less lethal a virus is, the longer the average 
time for which the host lives, and therefore the longer the time the virus can spend 
living in the host and transmitting itself to other hosts.

Empirical studies, however—though difficult to perform because the variables 
are hard to define and measure—were not able to decisively confirm the avirulence 
hypothesis. In the early 1980s, Anderson and May and others presented another 
hypothesis,21 known as the virulence-transmission trade-off. This hypothesis rests on 
the observation that if a virus has a higher transmission rate, it is likely to be more abun-
dant in a host. Greater abundance means greater cost to the host, which means a higher 
mortality rate but also a lower daily rate of recovery if the patient does not die—that 
is, the patient is sick for longer. The higher mortality rate tends to reduce the virus’s R 
because it can only live in the host and transmit itself for a shorter time. But the longer 
recovery time tends to increase the virus’s R because it can live in the sick patient longer.

The virulence-transmission trade-off hypothesis arrives at an optimal transmissiv-
ity for the virus given that transmissivity increases mortality, but also increases recov-
ery time for patients who do not die. It is a nice theory, but unfortunately attempts to 
verify it empirically have stumbled. The problem is twofold: first, it is difficult to gather 
data for the variables as defined in the model to verify it empirically; and second, other 
complicating factors can cause the relationship to be different from the result of the 
theoretical model. The result is that there is no reliable method as yet to predict with 
any certainty how the virus will evolve over time, and what its transmission rate and 
virulence will be. There are still hopes for the virulence-transmission trade-off hypoth-
esis, but it has yet to be confirmed at a high level of confidence.

20. S. Alizon, A. Hurford, N. Mideo, and M. Van Baalen, ‘Virulence Evolution and the Trade‐Off Hypothesis: 
History, Current State of Affairs and the Future’, Journal of Evolutionary Biology 22, no. 2 (2009): 245–259; 
Clayton E. Cressler, David V. McLeod, Carly Rozins, Josée van den Hoogen, and Troy Day, ‘The Adaptive 
Evolution of Virulence: A Review of Theoretical Predictions and Empirical Tests’, Parasitology 143, no. 7 
(2016): 915–930; Miguel A. Acevedo, Forrest P. Dillemuth, Andrew J. Flick, Matthew J. Faldyn, and Bret D. 
Elderd, ‘Virulence‐Driven Trade‐Offs in Disease Transmission: A Meta‐analysis’, Evolution 73, no. 4 (2019): 
636–647.

21. Roy M. Anderson and Robert M. May, ‘Coevolution of Hosts and Parasites’, Parasitology 85, no. 2 (1982): 
411–426.
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Another phenomenon, however, leads to the conclusion that the virus will 
weaken over time. As many people in the population contract one variant of the virus 
or another, and as many people get vaccinated for the virus, their immunity to it and 
to future variants tends to increase.22 This has been called ‘hybrid immunity’—that is, 
immunity acquired from both prior infection and vaccination.23 Therefore, there is a 
reasonable expectation that COVID-19, while it will be with us for a long time, will 
gradually become less and less of a problem over time.

Conclusion

The most salient—and dangerous—mathematical feature of the spread of disease is 
exponential growth. Exponential growth is especially problematic when the disease’s 
transmissivity—its rate of spread, its R number—is large. If the rate of spread is not 
too great, and diligent test-and-trace methods are applied to find and isolate infectious 
disease carriers before they can spread the disease, the disease can be contained. But if 
the R number is so large that it overwhelms the capacity to test and trace, it can then 
spread exponentially, catastrophically exceeding hospital and medical care capacities. 
This was the case with the Omicron variant of COVID-19—though it was at least, for-
tunately, less deadly than previous variants.

There may be little that can be done to contain a disease that is both highly trans-
missive and highly virulent, except to ride it out until herd immunity. This is essentially 
what happened with the black plagues of the Middle Ages, though in those cases the 
problem was a lack of the medical knowledge needed to contain it. Nevertheless, for 
many countries of the world, insufficient preparation allowed COVID-19 to spread 
more than it needed to. With adequate preparation, it could have been contained 
through better test-and-trace methods and more isolation of the infectious. In advance 
of a likely future onset of another disease, mathematical modelling of varying hypo-
thetical levels of transmissivity and virulence should be undertaken to determine what 
levels and types of preparation should be put in place to contain all but the most trans-
missive, and thus uncontainable, of them. Cost-benefit analyses can be undertaken to 
determine what levels of defence against the spread of future diseases should be put in 
place to contain all but—to borrow a measure used to determine how much defence 
should be put in place against a flood or tsunami—the thousand-year disease. This 
anticipatory and preventive use of mathematical modelling may be even more essential 
than using it after a disease strikes.

22. William Hanage, ‘After Omicron, This Pandemic Will Be Different’, The New York Times, 19 January 2022, 
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